Chapter 2

Elements of fractional calculus

In this chapter, we present the elementary definitions of fractional integrals and fractional derivatives in the sense of Riemann-Liouville, Caputo and Grünwald-Letnikov. In addition its properties

2.1 Riemann-Liouville fractional integral

Functions defined on [a, b].

Let $f : [a,b] \to \mathbb{R}$ a function defined on [a,b].

Let's denote by $\left(I_{a^+}^1 f\right)$ the primitive of f which vanishes at a

$$\forall t \in [a,b] : \left(I_{a^+}^1 f\right)(t) = \int_a^t f(\tau) d\tau.$$

The iteration of f makes it possible to obtain the second primitive of f which vanishes at a and whose derivative vanishes at a. Furthermore, according to Fubini's theorem, we have

$$\begin{pmatrix} I_{a^+}^1 f \end{pmatrix}^2 (t) = \left(\begin{pmatrix} I_{a^+}^1 f \end{pmatrix} \circ \begin{pmatrix} I_{a^+}^1 f \end{pmatrix} \right) (t)$$

= $\int_a^t \left(\int_a^u f(\tau) d\tau \right) du$
= $\int_a^t (t - \tau) f(\tau) d\tau.$

Let $n \in \mathbb{N}^*$, By denoting $(I_{a^+}^1 f)^n$ the n^{th} iteration of $(I_{a^+}^1 f)$, a direct recurrence shows that

$$\left(I_{a^{+}}^{1}f\right)^{n}(t) = \frac{1}{(n-1)!} \int_{a}^{t} (t-\tau)^{n-1} f(\tau) d\tau.$$

If we note $g = \left(I_{a^+}^1 f\right)^n$, g is therefore the unique function verifying

$$\forall 0 \le k \le n-1 : g^{(k)}(a) = 0, g^{(n)} = f.$$

The equality $g^{(n)} = f$ justifies the following definition.

Definition 2.1.1 Let $n \in \mathbb{N}^*$. The left integral of order n of f, which we note $(I_{a^+}^n f)$ is defined by

$$(I_{a^+}^n f)(t) = \frac{1}{(n-1)!} \int_a^t (t-\tau)^{n-1} f(\tau) d\tau.$$

Thanks to the gamma function that we defined previously.

This is the property $\Gamma(n+1) = n!$, which allows us to generalize definition 2.1.1 as follows

Definition 2.1.2 The left Riemann-Liouville fractional integral of order $\alpha > 0$ of f is defined by

$$\forall t \in [a,b] : (I_{a^+}^{\alpha}f)(t) = \frac{1}{\Gamma(\alpha)} \int_a^t (t-\tau)^{\alpha-1} f(\tau) d\tau.$$

In the same way we define the Riemann-Liouville fractional integral on the right of order $\alpha > 0$ of f by

$$\forall t \in [a,b] : (I_{b^-}^{\alpha}f)(t) = \frac{1}{\Gamma(\alpha)} \int_t^b (\tau-t)^{\alpha-1} f(\tau) d\tau.$$

Functions defined on \mathbb{R}^+ and \mathbb{R} .

It is natural to extend definition 2.1.2 to the \mathbb{R}^+ and \mathbb{R} axes. Let us denote these operators

$$\forall t \in \mathbb{R}^+ : (I_{0^+}^{\alpha} f)(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-\tau)^{\alpha-1} f(\tau) d\tau.$$

$$\forall t \in \mathbb{R} : (I_+^{\alpha} f)(t) = \frac{1}{\Gamma(\alpha)} \int_{-\infty}^t (t-\tau)^{\alpha-1} f(\tau) d\tau.$$

Proposition 2.1.1 For $\alpha > 0, \beta > 0$, we have

1)
$$I_{a^+}^{\alpha}(t-a)^{\beta-1} = \frac{\Gamma(\beta)}{\Gamma(\alpha+\beta)}(t-a)^{\alpha+\beta-1}.$$

2) $I_{b^-}^{\alpha}(b-t)^{\beta-1} = \frac{\Gamma(\beta)}{\Gamma(\alpha+\beta)}(b-t)^{\alpha+\beta-1}.$

Proof. 1)

$$I_{a^{+}}^{\alpha}(t-a)^{\beta-1} = \int_{a}^{t} (t-\tau)^{\alpha-1} (\tau-a)^{\beta-1} d\tau.$$

Let's put

$$\tau - a = s(t - a) \Longrightarrow d\tau = (t - a)ds$$

So we have

$$\begin{split} I_{a^{+}}^{\alpha}(t-a)^{\beta-1} &= \frac{1}{\Gamma(\alpha)} \int_{a}^{t} (t-\tau)^{\alpha-1} (\tau-a)^{\beta-1} d\tau \\ &= \frac{1}{\Gamma(\alpha)} \int_{0}^{1} ((t-a) - s(t-a))^{\alpha-1} (s(t-a))^{\beta-1} (t-a) ds \\ &= \frac{1}{\Gamma(\alpha)} (t-a)^{\alpha+\beta-1} \int_{0}^{1} s^{\beta-1} (1-s)^{\alpha-1} ds \\ &= \frac{1}{\Gamma(\alpha)} (t-a)^{\alpha+\beta-1} B(\alpha,\beta) \\ &= \frac{1}{\Gamma(\alpha)} (t-a)^{\alpha+\beta-1} \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} \\ &= \frac{\Gamma(\beta)}{\Gamma(\alpha+\beta)} (t-a)^{\alpha+\beta-1} . \end{split}$$

2) Same idea (change of variable is $b - \tau = s(b - t)$).

Remark 2.1.1 If a = 0 we have

$$I_{a^+}^{\alpha}t^{\beta} = \frac{\Gamma(\beta+1)}{\Gamma(\alpha+\beta+1)}t^{\alpha+\beta}.$$

In particular according to this relation, the Riemann-Liouville fractional integral of a constant $C \in \mathbb{R}$ is given by

$$I_{a^+}^{\alpha}C = \frac{C}{\Gamma(\alpha+1)}t^{\alpha}.$$

Theorem 2.1.1 If $f \in L^1([a, b])$, then $I_{a^+}^{\alpha} f$ exists for all $\alpha > 0$ and $I_{a^+}^{\alpha} f \in L^1([a, b])$.

Proposition 2.1.2 Let $\alpha > 0, \beta > 0$ and $f \in L^1([a, b])$. Then

$$\left(I_{a^+}^{\alpha}I_{a^+}^{\beta}f\right)(t) = \left(I_{a^+}^{\beta}I_{a^+}^{\alpha}f\right)(t) = \left(I_{a^+}^{\alpha+\beta}f\right)(t).$$

Proof.

$$\begin{pmatrix} I_{a^+}^{\alpha} I_{a^+}^{\beta} f \end{pmatrix}(t) = \frac{1}{\Gamma(\alpha)} \int_a^t (t-\tau)^{\alpha-1} \left(\frac{1}{\Gamma(\beta)} \int_a^\tau (\tau-s)^{\beta-1} f(s) ds \right) d\tau$$

$$= \frac{1}{\Gamma(\alpha) \Gamma(\beta)} \int_a^t \int_a^\tau (t-\tau)^{\alpha-1} (\tau-s)^{\beta-1} f(s) ds d\tau.$$

Changing the integration order, we have

$$\begin{pmatrix} I_{a^+}^{\alpha} I_{a^+}^{\beta} f \end{pmatrix}(t) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_a^t \int_a^\tau (t-\tau)^{\alpha-1} (\tau-s)^{\beta-1} f(s) ds d\tau = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_a^t f(s) \left(\int_s^t (t-\tau)^{\alpha-1} (\tau-s)^{\beta-1} d\tau \right) ds$$

Let's put

$$\tau - s = u(t - s) \Longrightarrow d\tau = (t - s)du$$

So we have

$$\begin{split} \left(I_{a^{+}}^{\alpha}I_{a^{+}}^{\beta}f\right)(t) &= \frac{1}{\Gamma(\alpha)\Gamma(\beta)}\int_{a}^{t}f(s)\left(\int_{s}^{t}(t-\tau)^{\alpha-1}(\tau-s)^{\beta-1}d\tau\right)ds\\ &= \frac{1}{\Gamma(\alpha)\Gamma(\beta)}\int_{a}^{t}f(s)\left(\int_{s}^{t}((t-s)-u(t-s))^{\alpha-1}(u(t-s))^{\beta-1}(t-s)du\right)ds\\ &= \frac{1}{\Gamma(\alpha)\Gamma(\beta)}\int_{a}^{t}f(s)(t-s)^{\alpha+\beta-1}\left(\int_{0}^{1}(1-u)^{\alpha-1}u^{\beta-1}du\right)ds\\ &= \frac{1}{\Gamma(\alpha)\Gamma(\beta)}\int_{a}^{t}f(s)(t-s)^{\alpha+\beta-1}ds\\ &= \frac{1}{\Gamma(\alpha)\Gamma(\beta)}\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}\int_{a}^{t}(t-s)^{\alpha+\beta-1}f(s)ds\\ &= \frac{1}{\Gamma(\alpha+\beta)}\int_{a}^{t}(t-s)^{\alpha+\beta-1}f(s)ds\\ &= \left(I_{a^{+}}^{\alpha+\beta}f\right)(t). \end{split}$$

2.2 Fractional derivatives

There are several definitions of fractional derivatives, we present in this part the definitions of Riemann-Liouville, Caputo as well as Grünwald-Letnikov which are the most used.