$$D_{a^{+}}^{\alpha}f(t) = \frac{\Gamma(\beta)}{\Gamma(n-\alpha+\beta)} (n-\alpha+\beta-1) (n-\alpha+\beta-2) \dots (\beta-\alpha)(t-a)^{\beta-\alpha-1}$$

=
$$\frac{\Gamma(\beta) (n-\alpha+\beta-1) (n-\alpha+\beta-2) \dots (\beta-\alpha)}{(n-\alpha+\beta-1)(n-\alpha+\beta-2) \dots (\beta-\alpha)\Gamma(\beta-\alpha)} (t-a)^{\beta-\alpha-1}$$

=
$$\frac{\Gamma(\beta)}{\Gamma(\beta-\alpha)} (t-a)^{\beta-\alpha-1}.$$

2) In the same way. \blacksquare

Remark 2.2.2 For $\lambda = \beta - 1$ and a = 0 we have

$$\begin{split} D_{0^+}^{\alpha} t^{\lambda} &= \frac{\Gamma(\lambda+1)}{\Gamma(n-\alpha+\lambda+1)} \left(n-\alpha+\lambda\right) \left(n-\alpha+\lambda-1\right) \dots \left(\lambda+1-\alpha\right) t^{\lambda-\alpha} \\ &= \frac{\Gamma(\lambda+1)}{\Gamma(n-\alpha+\lambda+1)} \left(n-(\alpha-\lambda)\right) \left(n-1-(\alpha-\lambda)\right) \dots \left(1-(\alpha-\lambda)\right) t^{\lambda-\alpha} \\ &= \begin{cases} \frac{\Gamma(\lambda+1)}{\Gamma(\lambda-\alpha+1)} t^{\lambda-\alpha}, & si \ \alpha-\lambda \notin \{1,2,\dots,n\}\\ 0, & si \ \alpha-\lambda \in \{1,2,\dots,n\} \end{cases}, \ \lambda > -1. \end{split}$$

 $If \ \alpha - \lambda \in \{1, 2, ..., n\} \Longrightarrow \alpha - \lambda = m \Longrightarrow \lambda = \alpha - m, m \in \{1, 2, ..., n\} \ i.e.$

$$D_{0^+}^{\alpha} t^{\alpha-m} = 0, m \in \{1, 2, ..., n\}.$$

Remark 2.2.3 If $\beta = 0$ and a = 0, the Riemann-Liouville fractional derivative of a constant $C \in \mathbb{R}$ is non-zero and its value is

$$D_{a^+}^{\alpha}C = \frac{C}{\Gamma(1-\alpha)}t^{-\alpha}.$$

2.2.2 Fractional derivatives of Caputo

This definition based on the inversion of the compositions in the formula of definition 2.2.1 also seems reasonable to define a fractional derivative called Caputo fractional derivative.

Definition 2.2.5 Let $\alpha > 0$ and $n = [\alpha] + 1$. The left Caputo fractional derivative of order α of f is defined by

$$\forall t \in [a,b] :^{C} D_{a^{+}}^{\alpha} f(t) = I_{a^{+}}^{n-\alpha} \circ \left(\frac{d}{dt}\right)^{n} f(t) = \frac{1}{\Gamma(n-\alpha)} \int_{a}^{t} (t-\tau)^{n-\alpha-1} f^{(n)}(\tau) d\tau.$$

 So

Furthermore, we saw that definition 2.2.5 of right integral was associated with -d/dt. The preceding reasoning therefore leads to the following definition

Definition 2.2.6 Let $\alpha > 0$ and $n = [\alpha] + 1$. The right Caputo fractional derivative of order α of f is defined by

$$\forall t \in [a,b] :^{C} D_{b^{-}}^{\alpha} f(t) = I_{b^{-}}^{n-\alpha} \circ \left(-\frac{d}{dt}\right)^{n} f(t) = \frac{(-1)^{n}}{\Gamma(n-\alpha)} \int_{t}^{b} (\tau-t)^{n-\alpha-1} f^{(n)}(\tau) d\tau.$$

Remark 2.2.4 On the other hand, such definitions do not fit correctly with the classic derivatives, $\forall n \in \mathbb{N}^*$ we have

$${}^{C}D_{a^{+}}^{n}f(t) = f^{(n)}(t) - f^{(n)}(a).$$
$${}^{C}D_{b^{-}}^{n}f(t) = (-1)^{n} \left(f^{(n)}(t) - f^{(n)}(a)\right).$$

Fortunately, the following result shows that they approach the classical derivatives by lower limit.

Lemma 2.2.1 Let $\alpha \in \mathbb{R}^+ - \mathbb{N}$ and $n = [\alpha] + 1$. If $f \in AC^n([a, b])$, so almost everywhere

$$\lim_{\alpha \to n^{-}} {}^{C}D_{a^{+}}^{\alpha}f(t) = f^{(n)}(t).$$
$$\lim_{\alpha \to n^{-}} {}^{C}D_{b^{-}}^{\alpha}f(t) = (-1)^{n}f^{(n)}(t).$$

Proposition 2.2.2 For $\alpha > 0, \beta > 0$, we have

1)
$$^{C}D_{a^{+}}^{\alpha}(t-a)^{\beta-1} = \frac{\Gamma(\beta)}{\Gamma(\beta-\alpha)}(t-a)^{\beta-\alpha-1}, \beta > n.$$

2) $^{C}D_{b^{-}}^{\alpha}(b-t)^{\beta-1} = \frac{\Gamma(\beta)}{\Gamma(\beta-\alpha)}(b-t)^{\beta-\alpha-1}, \beta > n.$

Proof. 1) We put $f(t) = (t - a)^{\beta - 1}$, according to definition 2.2.5 and proposition 2.1.1 we have

$${}^{C}D_{a^{+}}^{\alpha}f(t) = I_{a^{+}}^{n-\alpha} \circ \left(\frac{d}{dt}\right)^{n} f(t) = \frac{1}{\Gamma(n-\alpha)} \int_{a}^{t} (t-\tau)^{n-\alpha-1} \left(\frac{d}{dt}\right)^{n} (\tau-a)^{\beta-1} d\tau,$$

and

$$\left(\frac{d}{dt}\right)^{n} (\tau - a)^{\beta - 1} = (\beta - 1) (\beta - 2) \dots (\beta - 1 - (n - 1)) (\tau - a)^{\beta - 1 - n}$$
$$= (\beta - 1) (\beta - 2) \dots (\beta - n) (\tau - a)^{\beta - n - 1}.$$

Hence

$${}^{C}D_{a^{+}}^{\alpha}f(t) = \frac{(\beta-1)(\beta-2)...(\beta-n)}{\Gamma(n-\alpha)} \int_{a}^{t} (t-\tau)^{n-\alpha-1}(\tau-a)^{\beta-n-1}d\tau.$$

Let's put

$$\tau - a = s(t - a) \Longrightarrow d\tau = (t - a)ds$$

 $\tau = -a - s(t - a)$

So we have

$${}^{C}D_{a^{+}}^{\alpha}f(t) = \frac{(\beta-1)(\beta-2)...(\beta-n)}{\Gamma(n-\alpha)} \int_{a}^{t} (t-\tau)^{n-\alpha-1}(\tau-a)^{\beta-n-1}d\tau$$

$$= \frac{(\beta-1)(\beta-2)...(\beta-n)}{\Gamma(n-\alpha)} \int_{0}^{1} ((t-a)-s(t-a))^{n-\alpha-1}(s(t-a))^{\beta-n-1}(t-a)ds$$

$$= \frac{(\beta-1)(\beta-2)...(\beta-n)}{\Gamma(n-\alpha)} (t-a)^{\beta-\alpha-1} \int_{0}^{1} (1-s)^{n-\alpha-1}s^{\beta-n-1}ds$$

$$= \frac{(\beta-1)(\beta-2)...(\beta-n)}{\Gamma(n-\alpha)} (t-a)^{\beta-\alpha-1} B(n-\alpha,\beta-n)$$

$$= \frac{(\beta-1)(\beta-2)...(\beta-n)}{\Gamma(n-\alpha)} \frac{\Gamma(n-\alpha)\Gamma(\beta-n)}{\Gamma(\beta-\alpha)} (t-a)^{\beta-\alpha-1}$$

$$= \frac{(\beta-1)(\beta-2)...(\beta-n)\Gamma(\beta-n)}{\Gamma(\beta-\alpha)} (t-a)^{\beta-\alpha-1}$$

$$= \frac{(\beta-1)(\beta-2)...(\beta-n)\Gamma(\beta-n)}{\Gamma(\beta-\alpha)} (t-a)^{\beta-\alpha-1}$$

$$= \frac{\Gamma(\beta)}{\Gamma(\beta-\alpha)} (t-a)^{\beta-\alpha-1} .$$

2) In the same way. \blacksquare

Remark 2.2.5 For $\lambda = \beta - 1$ and a = 0 we have

$${}^{C}D_{0^{+}}^{\alpha}t^{\lambda} = \frac{\lambda\left(\lambda-1\right)\left(\lambda-2\right)...\left(\lambda-(n-1)\right)\Gamma\left(\lambda-(n-1)\right)}{\Gamma\left(\lambda-\alpha+1\right)}t^{\lambda-\alpha}$$
$$= \begin{cases} \frac{\Gamma\left(\lambda+1\right)}{\Gamma\left(\lambda-\alpha+1\right)}t^{\lambda-\alpha}, & si \ \lambda \notin \{1,2,...,n-1\}\\ 0, & si \ \lambda \in \{1,2,...,n-1\} \end{cases}, \ \lambda > -1.$$

i.e.

$${}^{C}D_{0^{+}}^{\alpha}t^{m} = 0, m \in \{1, 2, ..., n\}.$$

Remark 2.2.6 The use of the formula for Caputo fractional derivative of order $\alpha > 0$ of a constant $C \in \mathbb{R}$, expresses that this derivative is zero, i.e.

$$D_{a^+}^{\alpha}C = 0.$$

,

Theorem 2.2.1 Let $\alpha \geq 0$ and $n = [\alpha] + 1$.

If $f:[a;b] \to \mathbb{R}$ and if f has (n-1) derivatives at a and $D^{\alpha}_{a^+}f(t)$ exists. So

$${}^{C}D_{a^{+}}^{\alpha}f(t) = D_{a^{+}}^{\alpha} \left[f(t) - \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (t-a)^{k} \right],$$

almost for everything $t \in [a; b]$.

Proof. We have by definition

$$D_{a^{+}}^{\alpha} \left[f(t) - \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (t-a)^{k} \right] = \left(\frac{d}{dt} \right)^{n} I_{a^{+}}^{n-\alpha} \left[f(t) - \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (t-a)^{k} \right]$$
$$= \left(\frac{d}{dt} \right)^{n} \int_{a}^{t} \frac{(t-\tau)^{n-\alpha-1}}{\Gamma(n-\alpha)} \left[f(\tau) - \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (\tau-a)^{k} \right] d\tau.$$

Using integration by part

$$g(\tau) = f(\tau) - \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (\tau - a)^k \to \frac{d}{d\tau} g(\tau) = \frac{d}{d\tau} \left[f(\tau) - \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (\tau - a)^k \right]$$
$$\frac{d}{dt} h(t) = \frac{(t - \tau)^{n-\alpha-1}}{\Gamma(n-\alpha)} \to h(t) = -\frac{(t - \tau)^{n-\alpha}}{\Gamma(n-\alpha+1)},$$

we obtain

$$\begin{split} I_{a^{+}}^{n-\alpha}g(t) &= \int_{a}^{t} \frac{(t-\tau)^{n-\alpha-1}}{\Gamma(n-\alpha)} \left[f(\tau) - \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (\tau-a)^{k} \right] d\tau \\ &= \left[-\frac{(t-\tau)^{n-\alpha}}{\Gamma(n-\alpha+1)} g(\tau) \right]_{a}^{t} + \int_{a}^{t} \frac{(t-\tau)^{n-\alpha}}{\Gamma(n-\alpha+1)} \frac{d}{d\tau} g(\tau) d\tau \\ &= I_{a^{+}}^{n-\alpha+1} \frac{d}{dt} g(t). \end{split}$$

Likewise for n-times

$$\begin{split} I_{a^{+}}^{n-\alpha}g(t) &= I_{a^{+}}^{n-\alpha+n}\frac{d^{n}}{dt^{n}}g(t) \\ &= I_{a^{+}}^{n}I_{a^{+}}^{n-\alpha}\frac{d^{n}}{dt^{n}}g(t) \\ &= I_{a^{+}}^{n}I_{a^{+}}^{n-\alpha}\frac{d^{n}}{dt^{n}}\left[f(t) - \sum_{k=0}^{n-1}\frac{f^{(k)}(a)}{k!}(t-a)^{k}\right] \\ &= I_{a^{+}}^{n}I_{a^{+}}^{n-\alpha}\frac{d^{n}}{dt^{n}}f(t), \end{split}$$

because

$$\frac{d^n}{dt^n} \left[\sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (t-a)^k \right] = 0.$$

 So

$$\begin{split} D_{a^{+}}^{\alpha} \left[f(t) - \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (t-a)^{k} \right] &= \left(\frac{d}{dt} \right)^{n} I_{a^{+}}^{n-\alpha} \left[f(t) - \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (t-a)^{k} \right] \\ &= \left(\frac{d}{dt} \right)^{n} I_{a^{+}}^{n-\alpha} g(t) \\ &= \left(\frac{d}{dt} \right)^{n} I_{a^{+}}^{n-\alpha} \frac{d^{n}}{dt^{n}} f(t) \\ &= I_{a^{+}}^{n-\alpha} \circ \frac{d^{n}}{dt^{n}} f(t) \\ &= {}^{C} D_{a^{+}}^{\alpha} f(t). \end{split}$$

Corollaire 2.2.1 Let $\alpha \ge 0, n = [\alpha] + 1$ and $D_{a^+}^{\alpha} f, C D_{a^+}^{\alpha} f$ exist, we assume that $f^{(k)}(a) = 0$ for k = 0, 1, ..., n. So

$$D_{a^+}^{\alpha}f(t) =^C D_{a^+}^{\alpha}f(t).$$

2.2.3 Fractional derivatives of Grünwald-Letnikov

This definition is based on obtaining derivatives by finite differences [9].

Let $f : \mathbb{R} \to \mathbb{R}$, for h > 0 we have

$$f'(t) = \lim_{h \to 0} \frac{1}{h} [f(t) - f(t-h)],$$

and the second derivative

$$f''(t) = \lim_{h \to 0} \frac{1}{h} [f'(t) - f'(t-h)]$$

=
$$\lim_{h \to 0} \frac{1}{h} \left[\frac{1}{h} (f(t) - f(t-h)) - \frac{1}{h} (f(t-h) - f(t-2h)) \right]$$

=
$$\lim_{h \to 0} \frac{1}{h^2} [f(t) - 2f(t-h) + f(t-2h)].$$

More generally, the n^{th} derivative of f is given by

$$f^{(n)}(t) = \lim_{h \to 0} \frac{1}{h^n} \sum_{k=0}^n (-1)^k C_k^n f(t-kh), \qquad (2.2.1)$$