1.4 Convolution et régularisation sur \mathbb{R}^n

En présentant dans cette section le produit de convolution et leur propriété, la régularisation et les supports dans la convolution, on prend dans tout ce paragraphe $\Omega = \mathbb{R}^n$.

Définition 1.4.1 Soient f et g deux fonctions mesurables sur \mathbb{R}^n . On dit que le produit de convolution de f par g existe au point $x \in \mathbb{R}^n$, et dans ce cas on le note $f \star g(x)$, si l'intégrale $\int_{\mathbb{R}^n} f(x-y)g(y)dy$ a un sens. Dans ce cas, on pose :

$$(f \star g)(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dy.$$

Proposition 1.4.1 Soient f et g deux fonctions mesurables sur \mathbb{R}^n et $x \in \mathbb{R}^n$. Si $f \star g(x)$ existe, alors $g \star f(x)$ existe aussi et $f \star g(x) = g \star f(x)$.

Preuve. Supposons que $f \star g(x)$ existe, alors la fonction $y \mapsto f(x-y)g(y)$ est intégrable sur \mathbb{R}^n , c'est-à-dire $\int_{\mathbb{R}^n} f(x-y)g(y)dy < \infty$.

On pose $\varphi: u \mapsto x - u = y$ qui est un difféomorphisme de $\mathbb{R}^n \to \mathbb{R}^n$. Alors par application du théorème de changement de variable à la fonction h définie sur \mathbb{R}^n par h(y) = f(x - y)g(y) on obtient,

$$\int_{\mathbb{R}^n} f(x-y)g(y)dy = \int_{\mathbb{R}^n} h(\varphi(u))du = \int_{\mathbb{R}^n} f(u)g(x-u)du.$$

Donc $f \star g(x) = g \star f(x) \ \forall x \in \mathbb{R}^n$.

Remarque 1.4.1 Soient f, g et h trois fonctions mesurables positives sur \mathbb{R}^n , pour tout $x \in \mathbb{R}^n$ on $a : [(f \star g) \star h](x) = [f \star (g \star h)](x)$.

Théorème 1.4.1 Soient $f \in L^1$ et $g \in L^p$ avec $1 \le p \le \infty$. Alors pour presque tout $x \in \mathbb{R}^n$ la fonction $y \mapsto f(x-y)g(y)$ est intégrable sur \mathbb{R}^n et $f \star g \in L^p$, de plus on a :

$$||f \star g||_{L^p} \le ||f||_{L^1} ||g||_{L^p}$$

Preuve.

Pour $p = \infty$:

Soient $f \in L^1$ et $g \in L^{\infty}$. Montrons que la fonction mesurable $y \mapsto f(x-y)g(y)$ est intégrable sur \mathbb{R}^n .

Nous avons, $f \in L^1$ alors $||f||_{L^1} = \int_{\mathbb{R}^n} |f| dx < \infty$, $g \in L^\infty$ donc $\exists C > 0$ tel que $|g(x)| \leq C$ p.p. Par conséquent,

$$\int_{\mathbb{R}^n} |f(x-y)| |g(y)| dy \le C \int_{\mathbb{R}^n} |f(x-y)| dy.$$

Comme la mesure de Lebesgue est stable par translation, alors $\int_{\mathbb{R}^n} |f(x-y)| dy = ||f||_{L^1}$. Ainsi

$$\int_{\mathbb{R}^n} |f(x-y)| |g(y)| dy \le C ||f||_{L^1} < \infty,$$

ce qui donne $y \mapsto f(x-y)g(y)$ est intégrable sur \mathbb{R}^n , par suite $f \star g(x)$ existe presque partout.

Montrons l'inégalité :

On a : $|f \star g(x)| = |\int_{\mathbb{R}^n} f(x-y)g(y)dy| \le \int_{\mathbb{R}^n} |f(x-y)||g(y)|dy$, et on sait que $|g(y)| \le ||g||_{L^{\infty}}$, on obtient alors,

$$\int_{\mathbb{R}^n} |f(x-y)||g(y)|dy \leq \int_{\mathbb{R}^n} |f(x-y)|||g||_{L^{\infty}} dy$$

$$\leq ||g||_{L^{\infty}} \int_{\mathbb{R}^n} |f(x-y)| dy$$

$$\leq ||g||_{L^{\infty}} ||f||_{L^1},$$

et par suite $|f \star g(x)| \leq ||g||_{L^{\infty}} ||f||_{L^{1}}$ p.p. Donc $||f \star g(x)||_{L^{\infty}} \leq ||g||_{L^{\infty}} ||f||_{L^{1}}$ par définition de la norme $||.||_{L^{\infty}}$

Pour p = 1:

On pose F(x,y)=f(x-y)g(y), alors F est mesurable et pour presque tout $y\in\mathbb{R}^n$ on a :

$$\int_{\mathbb{R}^n} |F(x,y)| dx = |g(y)| \int_{\mathbb{R}^n} |f(x-y)| dx = |g(y)| ||f||_{L^1}$$

Comme $f \in L^1$ alors $||f||_{L^1} < \infty$, et $g \in L^1$ donc $\lambda(\{g = +\infty\}) < \infty$ par suite $|g(y)|||f||_{L^1} < \infty$ p.p. Donc $\int_{\mathbb{R}^n} |F(x,y)| dy < \infty$ pour presque tout $y \in L^1$.

D'après le théorèmé de Fubini, on a :

$$\int_{\mathbb{R}^{n}} dy \int_{\mathbb{R}^{n}} |F(x,y)| dx = \int_{\mathbb{R}^{n}} |g(y)| dy \int_{\mathbb{R}^{n}} |f(x-y)| dx$$
$$= ||g||_{L^{1}} ||f||_{L^{1}} < \infty,$$

et par application du théorème de Tonelli on voit que $F \in L^1(\mathbb{R}^n \times \mathbb{R}^n)$, et par le théorèmé de Fubini nous obtenons $\int_{\mathbb{R}^n} |F(x,y)| dy < \infty$; donc $y \mapsto f(x-y)g(y)$ est intégrable sur

 \mathbb{R}^n et :

$$||f \star g||_{L^{1}} \leq \int_{\mathbb{R}^{n}} |f \star g(x)| dx$$

$$\leq \int_{\mathbb{R}^{n}} dx \int_{\mathbb{R}^{n}} |F(x, y)| dy$$

$$\leq ||f||_{L^{1}} ||g||_{L^{1}}$$

Pour 1 :

Supposons que $f \in L^1$ et $g \in L^p$, alors $|g|^p \in L^1$ et par suite pour presque tout $x \in \mathbb{R}^n$, la fonction $y \mapsto |f(x-y)|g(y)|^p$ et intégrable sur \mathbb{R}^n . On a : $|f(x-y)||g(y)|^p \in L^1_y$ donc $|f(x-y)|^{\frac{1}{p}}|g(y)| \in L^p_y$.

Soit $q \in]1, +\infty[$ tel que $\frac{1}{p} + \frac{1}{q} = 1$ alors $f \in L^1$ implique que $|f|^{\frac{1}{q}} \in L^q$ d'où $|f(x-y)|^{\frac{1}{q}} \in L^q_y$ et donc :

$$|f(x-y)||g(y)| = |f(x-y)|^{\frac{1}{p}+\frac{1}{q}}|g(y)|$$
$$= |f(x-y)|^{\frac{1}{p}}|g(y)||f(x-y)|^{\frac{1}{q}}.$$

Par utilisation de l'inégalité de Hölder, nous obtenons :

$$\int_{\mathbb{R}^n} |f(x-y)g(y)| dy \leq \left[\int_{\mathbb{R}^n} \left(|f(x-y)|^{\frac{1}{p}} |g(y)| \right)^p \right]^{\frac{1}{p}} \left[\int_{\mathbb{R}^n} |f(x-y)|^{\frac{q}{q}} \right]^{\frac{1}{q}} \\
\leq \left[\int_{\mathbb{R}^n} \left(|f(x-y)| |g(y)|^p \right) \right]^{\frac{1}{p}} \left[\int_{\mathbb{R}^n} |f(x-y)| \right]^{\frac{1}{q}}$$

alors $|f\star g(x)| \leq \left[\left(|f|\star|g|^p(x)\right)\right]^{\frac{1}{p}} \|f\|_{L^1}^{\frac{1}{q}}$ ce qui donne : $|f\star g(x)|^p \leq (|f|\star|g|^p(x)) \|f\|_{L^1}^{\frac{p}{q}} \in L^p$ ainsi $f\star g \in L^p$ et :

$$\int_{\mathbb{R}^{n}} |f \star g(x)|^{p} dx \leq \|f\|_{L^{1}}^{\frac{p}{q}} \int_{\mathbb{R}^{n}} (|f| \star |g|^{p}(x)) dx
\leq \|f\|_{L^{1}}^{\frac{p}{q}} \||g|^{p}\|_{L^{1}} \|f\|_{L^{1}}
\leq \|f\|_{L^{1}}^{p} \|g\|_{L^{p}}^{p}$$

ce qui donne $||f \star g||_{L^p} \le ||f||_{L^1} ||g||_{L^p}$.

1.4.1 Supports dans la convolution

La notion de support d'une fonction continue est bien connue : c'est le complémentaire du plus grand ouvert sur lequel f est nulle ou encore c'est l'adhérence de l'ensemble

 $\{x; f(x) \neq 0\}$. Quand on travaille avec des fonctions mesurables il faut être plus prudent, puisque ces fonctions sont seulement définies presque partout. La définition appropriée est la suivante :

Proposition 1.4.2 (et définition du support) Soit $\Omega \subset \mathbb{R}^n$ un ouvert et soit f une fonction définie sur Ω à valeurs dans \mathbb{R} . On considère la famille de tous les ouverts $(\omega_i)_{i\in I}, \omega_i \subset \Omega$ tels que pour chaque $i \in I$, f = 0 p.p. sur ω_i . On pose $\omega = \bigcup_{i\in I} \omega_i$, alors f = 0 p.p. sur ω et par définition, Supp $f = \Omega \setminus \omega$.

Preuve. La famille d'indices I est quelconque, pour se ramener au cas dénombrable on procède de la manière suivante :

Soit $(K_i)_{i\in\mathbb{N}^*}$ une suite de compacts tels que $\omega = \bigcup_{i\in\mathbb{N}^*} K_i$, on peut prendre :

$$K_i = \{x \in \omega, \ d(x, \mathbb{R}^n \setminus \omega) \ge \frac{1}{i} \ et \ ||x|| \le i\}$$

on a $K_i \subset \omega = \bigcup_{i \in I} \omega_i$ puisque K_i est compact il existe $I_i \subset I$ fini tel que $K_i \subset \bigcup_{j \in I_i} \omega_j$. Posons $J = \bigcup_{i \in \mathbb{N}} I_i$ donc J est dénombrable et comme $K_i \subset \bigcup_{j \in I_i} \omega_j$ alors :

$$\bigcup_{i\in\mathbb{N}} K_i \subset \bigcup_{i\in\mathbb{N}} \bigcup_{j\in I_i} \omega_j = \bigcup_{j\in\cup_{i\in\mathbb{N}}} \omega_j$$

donc $\omega \subset \bigcup_{j \in J} \omega_j$ et puisque $J \subset I$, alors :

$$\bigcup_{j\in J}\omega_j\subset\omega$$

Comme f = 0 p.p. sur ω_j alors $\exists N_j \subset \omega_j$ tel que N_j est négligeable et $\forall x \in N^c$ f(x) = 0 on prend $N = \bigcup_{j \in J} N_j$ et on a :

$$\lambda(N) = \lambda(\bigcup_{j \in J} N_j) \le \sum_{j \in J} \lambda(N_j) = 0$$

donc N est négligeable, et par suite $\exists N \subset \omega$ tel que $\forall x \in N^c$ f(x) = 0 donc f = 0 p.p. sur ω .

- Remarque 1.4.2 1. Si f_1 et f_2 sont deux fonctions telles que $f_1 = f_2$ p.p. sur Ω alors $supp(f_1) = supp(f_2)$, on peut donc parler du support d'une fonction $f \in L^p$.
 - 2. Si f est continue sur Ω on vérifie facilement que cette définition coïncide avec la définition usuelle.

Proposition 1.4.3 Soient $f \in L^1$ et $g \in L^p$. Alors

$$supp(f\star g)\subset \overline{supp(f)+supp(g)}.$$

Preuve. Soit $x \in \mathbb{R}^n$ fixé tel que la fonction $y \mapsto f(x-y)g(y)$ soit intégrable. On peut écrire :

$$(f \star g)(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dy$$
$$= \int_{S_x} f(x - y)g(y)dy + \int_{S_x^c} f(x - y)g(y)dy$$

οù

$$S_x = \{ y \in \mathbb{R}^n, \ y \in supp(g) \ et \ x - y \in supp(f) \}.$$

Nous avons alors $\int_{S_x^c} f(x-y)g(y)dy = 0$, ce qui donne,

$$(f \star g)(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dy = \int_{S_x} f(x - y)g(y)dy.$$

Si x n'est pas dans supp(f) + supp(g) alors $(x - supp(f)) \cap supp(g) = \emptyset$; sinon $\exists y$ tel que $y \in (x - supp(f))$ et $y \in supp(g)$ donc $x - y \in supp(f)$ et $y \in supp(g)$ et par suite $x = x - y + y \in supp(f) + supp(g)$, ce qui contredit le fait que x n'est pas dans supp(f) + supp(g) et donc $(f \star g)(x) = 0$ p.p. sur $(supp(f) + supp(g))^c$ en particulier sur $int((supp(f) + supp(g))^c) = \overline{supp(f) + supp(g)}^c$ où int(B) est l'interieur de B, et par conséquent $supp(f \star g) \subset \overline{supp(f) + supp(g)}$.

Remarque 1.4.3 Bien entendu si f et g sont tous deux à supports compacts, alors $f \star g$ est à support compact. En général, si l'un des supports seulement est compact, alors $f \star g$ n'est pas à support compact.

Proposition 1.4.4 Soient $f \in C_c(\mathbb{R}^n)$ et $g \in L^1_{loc}(\mathbb{R}^n)$. Alors

$$f \star g \in C(\mathbb{R}^n)$$
.

Preuve. Notons d'abord que pour tout $x \in \mathbb{R}^n$ la fonction $y \mapsto f(x-y)g(y)$ est intégrable sur \mathbb{R}^n et donc $(f \star g)(x)$ a un sens pour tout $x \in \mathbb{R}^n$. Soit $x_n \mapsto x$ et posons

$$F_n(y) = f(x_n - y)g(y)$$

$$F(y) = f(x - y)g(y)$$

de sorte que $F_n(y) \mapsto F(y)$ p.p. sur \mathbb{R}^n . D'autre part, soit K un compact fixe tel que $(x_n - Supp f) \subset K$ pour tout n. Donc $f(x_n - y) = 0$ pour y qui n'est pas dans K et par suite $|F_n(y)| \leq ||f||_{L^{\infty}} \mathbb{I}_K(y) g(y)$, majorante intégrable. On déduit du théorème de Lebesgue que

$$(f \star g)(x_n) = \int F_n(y)dy \to \int F(y)dy = (f \star g)(x).$$

Notations

 $C^k(\Omega)$ désigne l'espace des fonctions k fois continûment différentiables sur Ω

$$C^{\infty}(\Omega) = \bigcap_{k} C^{k}(\Omega)$$

$$C_{c}^{k}(\Omega) = C^{k}(\Omega) \cap C_{c}(\Omega)$$

$$C_{c}^{\infty}(\Omega) = C^{\infty}(\Omega) \cap C_{c}(\Omega)$$

Théorème 1.4.2 Soient $f \in C_c^m(\mathbb{R}^n)$ et $g \in L^1_{loc}(\mathbb{R}^n)$ $(m \in \mathbb{N})$. Alors

$$f \star g \in C^m(\mathbb{R}^n)$$
 et $D^{\alpha}(f \star g) = D^{\alpha}f \star g$ avec $|\alpha| \leq m$ et.

En particulier, si $f \in C_c^{\infty}(\mathbb{R}^n)$ et $g \in L_{loc}^1(\mathbb{R}^n)$ alors $f \star g \in C^{\infty}(\mathbb{R}^n)$.

Preuve. Soient $x_0 \in \mathbb{R}^n$, r > 0 et h la fonction définie sur $\beta(x_0, r) \times K'$ par : h(x, y) = f(x - y)g(y) où $K' = \{a - b/a \in \beta_f(0, \eta) \ et \ b \in K\}$ avec K = suppf alors K' est un compact car $K' = \tau(\beta_f(0, \eta) \times K)$ où τ est l'application continue définie par $\tau(a, b) = a - b$. Pour tout $x \in \beta(x_0, \eta)$, la fonction $y \mapsto h(x, y)$ est intégrable sur K'. Pour presque tout $y \in K'$, $x \mapsto h(x, y)$ est de classe C^m sur $\beta(x_0, \eta)$ et pour tout multi-indice α avec $|\alpha| \leq m$, on a pour tout $(x, y) \in \beta(x_0, \eta) \times (K' \setminus N)$ où N est un ensemble négligeable sur lequel g n'est pas définie, on a :

$$\begin{split} |D^{\alpha}h(x,y)| &= |D^{\alpha}f(x-y)g(y)| \\ &\leq \sup_{z \in \mathbb{R}^n} |D^{\alpha}f(z)||g(y)| \\ &\leq \max_{z \in K} |D^{\alpha}f(z)||g(y)|. \end{split}$$

Comme $g \in L^1_{loc}(\mathbb{R}^n)$ alors $g_{/K'}$ est intégrable et par le théorème de dérivation sous le signe intégrale, la fonction $x \mapsto \int_{K'} h(x,y) dy = f \star g(x)$ admet des dérivées partielles sur $\beta(x_0,\eta)$ et $D^{\alpha}(f\star g) = D^{\alpha}f\star g$ sur $\beta(x_0,\eta)$ pour tout $|\alpha| \leq m$, ce qui donne que $f\star g$ est de classe C^m sur $\beta(x_0,\eta)$ d'où le résultat puisque x_0 et η sont quelconques. En particulier si $f \in C_c^{\infty}(\mathbb{R}^n)$ et $g \in L^1_{loc}(\mathbb{R}^n)$, alors $f\star g \in C^{\infty}(\mathbb{R}^n)$.

1.4.2 Suites régularisantes

Définition 1.4.2 On appelle suite régularisante toute suite $(\rho_n)_{n\geq 1}$ de fonctions telles que :

- 1. $\rho_n \in C_c^{\infty}(\mathbb{R}^n)$
- 2. $supp \rho_n \subset \beta(0, \frac{1}{n})$
- 3. $\int \rho_n = 1$
- 4. $\rho_n \geq 0 \ sur \ \mathbb{R}^n$

Remarque 1.4.4 Dorénavant, on utilisera systématiquement $(\rho_n)_{n\geq 1}$ pour désigner une suite régularisante.

Une application sur la suite régularisante est présenté par l'exemple suivant :

Exemple 1.4.1 Soit $u : \mathbb{R} \to \mathbb{R}$ la fonction définie par :

$$u(x) = \begin{cases} exp\frac{1}{x}, & si \ x < 0 \\ 0, & si \ x \ge 0 \end{cases}$$

alors $u \in C^{\infty}(\mathbb{R}^+)$, $u^{(k)}(x) = P_k(\frac{1}{x})exp\frac{1}{x}$ si x < 0 où P_k sont des polynômes définies par récurrence :

$$P_0(x) = 1$$

$$P_{k+1}(x) = -x^2(P'_k(x) + P_k(x)) \quad \forall k \in \mathbb{N}$$

De plus:

$$\lim_{x \to 0^{-}} u^{(k)}(x) = 0$$

donc $u \in C^{\infty}(\mathbb{R})$ et $supp(u) = \mathbb{R}^-$. Posons :

$$\rho(x) = \begin{cases} e^{\frac{1}{\|x\|^2 - 1}}, & si \quad \|x\| < 1\\ 0, & si \quad \|x\| \ge 1 \end{cases}$$

 $où x \in \mathbb{R}^n$ et

$$||x|| = \sqrt{\sum_{i=1}^{n} x_i^2}$$
 (norme euclidienne)

Alors:

$$\rho: x \in \mathbb{R}^n \mapsto \|x\|^2 - 1 \in \mathbb{R} \mapsto \rho(x) \in \mathbb{R}$$

est de classe C^{∞} sur \mathbb{R}^n , supp $(\rho) = \beta(0,1)$, $\rho(x) \geq 0 \ \forall x \in \mathbb{R}^n$, $\rho > 0$ sur $\beta(0,1)$ donc:

$$\int_{\mathbb{R}^n} \rho(x) dx > 0.$$

Posons alors $c = (\int_{\mathbb{R}^n} \rho(x) dx)^{-1}$ et prenons $\rho_k(x) = ck^n \rho(kx)$ $k \in \mathbb{N}$; alors $(\rho_k)_{k \in \mathbb{N}}$ est une suite régularisante.

Proposition 1.4.5 Soit $f \in C(\mathbb{R}^n)$ alors $\rho_n \star f$ converge uniformément vers f sur tout compact de \mathbb{R}^n .

Preuve. Soit K un compact de \mathbb{R}^n . f étant continue sur \mathbb{R}^n elle est uniformément continue sur K d'après le théorème de Heine. Par suite :

$$\forall \varepsilon > 0 \ \exists \eta > 0 \ \forall x, y \in K : \ ||x - y|| < \eta \ |f(x) - f(y)| < \varepsilon$$

pour $y \in \beta(0, \eta)$ et $x \in K$, on a

$$||y|| = ||x - y + y|| < \eta \Longrightarrow |f(x - y) - f(y)| < \varepsilon$$

et donc

$$|(\rho_n \star f)(x) - f(x)| = \left| \int_{\mathbb{R}^n} f(x - y) \rho_n(y) dy - f(x) \right|$$

$$= \left| \int_{\mathbb{R}^n} f(x - y) \rho_n(y) dy - \int_{\mathbb{R}^n} f(x) \rho_n(y) dy \right|$$

$$= \int_{\beta(0, \frac{1}{n})} |f(x - y) - f(x)| \rho_n(y) dy$$

Finalement, pour $\varepsilon > 0$ et pour $E(\frac{1}{\eta})$ on a pour tout $n > \frac{1}{\eta} \ge E(\frac{1}{\eta})$ et pour tout $x \in K$ on ait $|(\rho_n \star f)(x) - f(x)| < \varepsilon$

Théorème 1.4.3 Soit $f \in L^p(\mathbb{R}^n)$ avec $1 \leq p < 1$. Alors $\rho_n \star f$ converge vers f dans $L^p(\mathbb{R}^n)$.

Preuve. Soient $f \in L^p(\mathbb{R}^n)$ et $\varepsilon > 0$. Comme $C_c(\mathbb{R}^n)$ est dense dans $L^p(\mathbb{R}^n)$ alors $\exists f_{\varepsilon} \in C_c(\mathbb{R}^n)$ tel que $||f - f_{\varepsilon}|| < \frac{\varepsilon}{3}$.

D'après la proposition précédente $\rho_n \star f_{\varepsilon}$ converge uniformément vers f_{ε} sur tout compact. D'autre part on a :

$$supp(\rho_n \star f_{\varepsilon}) \subset \overline{supp(\rho_n) + supp(f_{\varepsilon})}$$

 et

$$supp(\rho_n) \subset \beta(0,\frac{1}{n})$$

donc

$$supp(\rho_n \star f_{\varepsilon}) \subset \overline{\beta(0, \frac{1}{n}) + supp(f_{\varepsilon})} \subset K$$

où K est un compact fixé. K étant compact donc borné et mesurable donc $\lambda(K) < \infty$ en plus $\rho_n \star f_{\varepsilon}$ converge uniformément vers f_{ε} donc :

$$\|\rho_n \star f_{\varepsilon} - f_{\varepsilon}\|_p$$
 tend vers 0 avec $\frac{1}{n}$

On a:

$$(\rho_n \star f)(x) - f(x) = (\rho_n \star f)(x) - (\rho_n \star f_{\varepsilon})(x) + (\rho_n \star f_{\varepsilon})(x) - f_{\varepsilon}(x) + f_{\varepsilon}(x) - f(x)$$
$$= \rho_n \star (f - f_{\varepsilon})(x) + (\rho_n \star f_{\varepsilon})(x) - f_{\varepsilon}(x) + f_{\varepsilon}(x) - f(x).$$

Alors:

$$\|\rho_n \star f - f\|_p \le \|\rho_n \star (f - f_{\varepsilon})\|_p + \|\rho_n \star f_{\varepsilon} - f_{\varepsilon}\|_p - \|f_{\varepsilon} - f\|_p.$$

Or d'après le théorème 1.4.1, nous avons,

$$\|\rho_n \star (f - f_{\varepsilon})\|_p \le \|\rho_n\|_1 \|f - f_{\varepsilon}\|_p = \|f - f_{\varepsilon}\|_p$$

d'où,

$$\|\rho_{n} \star f - f\|_{p} \leq \|f - f_{\varepsilon}\|_{p} + \|\rho_{n} \star f_{\varepsilon} - f_{\varepsilon}\|_{p} + \|f_{\varepsilon} - f\|_{p}$$

$$\leq 2\|f - f_{\varepsilon}\|_{p} + \|\rho_{n} \star f_{\varepsilon} - f_{\varepsilon}\|_{p}$$

$$\leq 2\frac{\varepsilon}{3}\|\rho_{n} \star f_{\varepsilon} - f_{\varepsilon}\|_{p}.$$

Soit $\varepsilon > 0$ $\exists N_{\varepsilon} \in \mathbb{N} : \forall n \geq N_{\varepsilon}$ on a $\|\rho_n \star f_{\varepsilon} - f_{\varepsilon}\|_p < \frac{\varepsilon}{3}$ par suite $\forall n \geq N_{\varepsilon}$, on a $\|\rho_n \star f - f\|_p < \varepsilon$ c'est-à-dire :

$$\lim_{n \to +\infty} \|\rho_n \star f - f\|_p = 0.$$

Corollaire 1.4.1 Soit $\Omega \subset \mathbb{R}^n$ un ouvert quelconque. Alors $C_c^{\infty}(\Omega)$ est dense dans $L^p(\Omega)$ pour $1 \leq p < \infty$

Preuve. Soit $f \in L^p(\Omega)$, montrons qu'il existe une suite $(f_n)_{n \in \mathbb{N}} \subset C_c^{\infty}(\Omega)$ telle que $(f_n)_{n \in \mathbb{N}}$ converge vers f dans $L^p(\Omega)$. Posons

$$\overline{f}(x) = \begin{cases} f(x), & si \ x \in \Omega \\ 0, & si \ x \in \mathbb{R}^n \backslash \Omega \end{cases}$$

alors $\overline{f} \in L^p(\mathbb{R}^n)$. Posons $f_n = \rho_n \star \overline{f}$ avec $(\rho_n)_{n \geq 1}$ est une suite régularisante. D'après le théorème 1.4.2 nous avons $f_n \in C_c^{\infty}(\mathbb{R}^n) \ \forall n \geq 1$ et en vertu du théorème 1.4.3 la suite $(f_n)_{n \geq 1}$ converge vers \overline{f} dans $L^p(\mathbb{R}^n)$, par suite $f_{n/\Omega}$ converge vers $\overline{f}_{/\Omega} = f$ dans $L^p(\Omega)$.