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with

Cnk =
n!

k!(n� k)! =
n(n� 1)(n� 2):::(n� (k � 1))

k!
:

It is possible to extend Cnk to k > n; by putting C
n
k = 0:

Formula (2.2.1) then becomes

f (�)(t) = lim
h!0

1

h�

+1X
k=0

(�1)kC�k f(t� kh):

Here again, we can generalize the term on the right thanks to the gamma function, we

put for � 2 R+ � N and k 2 N

C�k =
�(�+ 1)

�(k + 1)�(�� k + 1) :

Let us note this time that C�k 6= 0 even if k > n:

De�nition 2.2.7 Let � > 0: The left Grünwald-Letnikov fractional derivative of order � of

f is de�ned by

8t 2 R :GL D�
+f(t) = lim

h!0

1

h�

+1X
k=0

(�1)kC�k f(t� kh):

Let us also de�ne its analogue on the right.

De�nition 2.2.8 Let � > 0: The right Grünwald-Letnikov fractional derivative of order �

of f is de�ned by

8t 2 R :GL D�
�f(t) = lim

h!0

1

h�

+1X
k=0

(�1)kC�k f(t+ kh):

The Grünwald-Letnikov fractional derivative is of obvious numerical interest. If h is

su¢ ciently small, the discrete evaluation of 1
h�

P+1
k=0(�1)kC�k f(t� kh) makes it possible to

approximate the fractional derivative of Liouville on R.

2.2.4 Properties of fractional operators

One of the interests of fractional calculus is that it also generalizes certain properties of

classical derivatives and integrals: the fractional derivative of the integral of the same or-

der gives the identity, the derivative of a derivative gives back under certain conditions a
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2.2. Fractional derivatives

derivative, the integration by parts remains valid and fractional operators combine very well

with Fourier and Laplace transforms. This last property is omnipresent in many �elds of

applications presented in the previous section.

Linearity

Fractional integration and di¤erentiation are linear operators

I� (�f(t) + �g(t)) = �I� (f(t)) + �I� (g(t)) ; �; � 2 R;

D� (�f(t) + �g(t)) = �D� (f(t)) + �D� (g(t)) ; �; � 2 R;

for any derivation approach.

Compositions between operators

Proposition 2.2.3 Let � > 0; � > 0 and n = [�] + 1 we have the following properties

1) If f(t) 2 Lp([a; b]); 1 � p � 1; then

(D�
a+I

�
a+f) (t) = f(t) and (D

�
b�I

�
b�f) (t) = f(t):

2) If � > � and f(t) 2 Lp([a; b]); 1 � p � 1; then�
D�
a+I

�
a+f

�
(t) =

�
I���a+ f

�
(t) and

�
D�
b�I

�
b�f
�
(t) =

�
I���b� f

�
(t):

3) If f(t) 2 Cq([a; b]); q = [�+ �] + 1; then�
D�
a+D

�
a+f

�
(t) =

�
D�+�
a+ f

�
(t) and

�
D�
b�D

�
b�f
�
(t) =

�
D�+�
b� f

�
(t):

4) If f(t) 2 L1([a; b]) and
�
In��a+ f

�
(t) 2 ACn([a; b]); then

(I�a+D
�
a+f) (t) = f(t)�

nX
k=0

�
In��a+ f

�(n�k)
(a)

�(�� k + 1) (t� a)��k;

(I�b�D
�
b�f) (t) = f(t)�

nX
k=0

(�1)n�k
�
In��b� f

�(n�k)
(b)

�(�� k + 1) (b� t)��k:

In particular if 0 < � � 1
(I�a+D

�
a+f) (t) = f(t);

(I�b�D
�
b�f) (t) = f(t):
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2.2. Fractional derivatives

Proposition 2.2.4 Let � > 0; � > 0 and n = [�] + 1 we have the following properties

1) If f(t) 2 Cq([a; b]); q = [�+ �] + 1; then�
CD�

a+
CD�

a+f(t)
�
(t) =

�
CD�+�

a+ f
�
(t) and

�
CD�

b�
CD�

b�f(t)
�
(t) =

�
CD�+�

b� f
�
(t):

2) If f(t) 2 Cn([a; b]) or f(t) 2 ACn([a; b]); then

�
I�a+

CD�
a+f

�
(t) = f(t)�

n�1X
k=0

f (k)(a)

k!
(t� a)k;

�
I�b�

CD�
b�f
�
(t) = f(t)�

n�1X
k=0

(�1)kf (k)(b)
k!

(b� t)k:

In particular if 0 < � � 1�
I�a+

CD�
a+f

�
(t) = f(t)� f(a);�

I�b�
CD�

b�f
�
(t) = f(t)� f(b):

Integration by parts

The integration by parts formula is one of the properties extensible to fractional operators

but again under certain restrictions. This is where operators inevitably appear on the right.

In [12] a formula for integration by parts appears, but it requires several conditions. We

prefer to give here a simpli�ed version with explicit conditions that we found in [1].Z b

a

f(t)D�
a+g(t)dt =

Z b

a

D�
b�f(t)g(t)dt;Z b

a

f(t)D�
b�g(t)dt =

Z b

a

D�
a+f(t)g(t)dt:

Fourier transform of fractional derivatives

The Fourier transform of a function f ! L1(R) can be de�ned by [2]

8! 2 R : F [f ] (!) =
Z +1

�1
f(t)e�it!dt:

Let n 2 N: If f as well as all its derivatives up to order n are integrable, then

F
�
f (n)

�
(!) = (i!)nF [f ] (!) :

This result generalizes to fractional operators de�ned on R:
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2.2. Fractional derivatives

Lemma 2.2.2 Let 0 < � � 1 and f 2 L1(R): So

F
�
I��f

�
(!) = (�i!)��F [f ] (!) :

Corollaire 2.2.2 Let � > 0 and n = [�]+1: Let f 2 L1(R) such as for everything 1 � k �
n; Dk+��n

� f 2 L1(R): So

F
�
D�
�f
�
(!) = (�i!)�F [f ] (!) :

Proof. According to Lemma 2.2.2

F
�
In��� f

�
(!) = (�i!)��nF [f ] (!) :

As for all 1 � k � n; dk

dtk
In��+ f = Dk+��n

+ f 2 L1(R); so

F
�
D�
+f
�
(!) = F

�
dn

dtn
In��+ f

�
(!)

= (i!)nF
�
In��+ f

�
(!)

= (i!)n (i!)��nF [f ] (!)

= (i!)�F [f ] (!) :

The same for everything 1 � k � n; dk

dtk
In��� f = (�1)kDk+��n

� f 2 L1(R); so

F
�
D�
�f
�
(!) = F

�
(�1)n d

n

dtn
In��� f

�
(!)

= (�1)n (i!)nF
�
In��� f

�
(!)

= (�i!)n (�i!)��nF [f ] (!)

= (�i!)�F [f ] (!) :

Laplace transform of fractional derivatives

We say that the real function f : R+ ! RN has sub-exponential increasing, if

9A > 0;9s0 2 R;9t0 > 0;8t > t0 : jf(t)j � es0t:

If f 2 L1(R+); is sub-exponential increasing, recall that its Laplace transform is de�ned
by [13]

8s > s0; L [f ] (s) =
Z +1

0

f(t)e�stdt:
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2.2. Fractional derivatives

For n 2 N; if f 2 Cn(R+) is sub-exponential increasing, then

8s > s0; L
�
f (n)

�
(s) = snL [f ] (s)�

n�1X
k=0

sn�k�1f (k)(0): (2.2.2)

The extension to the fractional case is carried out this time with the fractional operators

with supports reduced by 0:

Lemma 2.2.3 Let � > 0 and f 2 L1(R) is sub-exponential increasing: Then

L [I�0 f ] (s) = s��L [f ] (s):

Proof. We write the Riemann-Liouville fractional integral I�0 f as a convolution of two

functions, i.e.

(I�0 f) (t) =
1

�(�)

Z t

0

(t� s)��1 f(s)ds

=
1

�(�)
t��1 � f(t):

So

L [I�0 f ] (s) = L
�
1

�(�)
t��1 � f

�
(s)

= L
�
1

�(�)
t��1

�
(s)L [f ] (s)

= s��L [f ] (s):

Proposition 2.2.5 Let � > 0 and n = [�]+1 and f 2 Cn(R) is sub-exponential increasing:
Then

1) 8s > s0; L [D�
0 f ] (s) = s

�L [f ] (s)�
n�1X
k=0

s�L [f ] (s)�
n�1X
k=0

skD��k�1f(0):

2) 8s > s0; L
�
CD�

0 f
�
(s) = s�L [f ] (s)�

n�1X
k=0

s��k�1f (k)(0):

23



2.2. Fractional derivatives

Proof. 1) We apply (2.2.2) to f; then we use Lemma 2.2.3

L [D�
0 f ] (s) = L

�
dn

dtn
In��0 f

�
(s)

= snL
�
In��0 f

�
(s)�

n�1X
k=0

sn�k�1(In��0 f)(k)(0)

= sns��nL [f ] (s)�
n�1X
k=0

sn�k�1(In��0 f)(k)(0)

= s�L [f ] (s)�
n�1X
k=0

sn�k�1(In��0 f)(k)(0):

We put

g(t) = (In��0 f)(t): (2.2.3)

So, we have

L [D�
0 f ] (s) = s�L [f ] (s)�

n�1X
k=0

sn�k�1(In��0 f)(k)(0)

= s�L [f ] (s)�
n�1X
k=0

sn�k�1g(k)(0)

= s�L [f ] (s)�
n�1X
k=0

skg(n�k�1)(0):

From (2.2.3), we have

g(n�k�1)(0) =
dn�k�1

dtn�k�1
g(0)

= Dn�k�1In��f(0)

= D��k�1f(0):

Thus,

L [D�
0 f ] (s) = s�L [f ] (s)�

n�1X
k=0

skg(n�k�1)(0)

= s�L [f ] (s)�
n�1X
k=0

skD��k�1f(0):
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2.2. Fractional derivatives

In the same way we apply Lemma 2.2.3 to f (n); then we use (2.2.2)

L
�
CD�

0 f
�
(s) = L

�
In��0

dn

dtn
f

�
(s)

= s��nL
�
f (n)

�
(s)

= s��n

"
snL [f ] (s)�

n�1X
k=0

sn�k�1f (k)(0)

#

= s�L [f ] (s)�
n�1X
k=0

s��k�1f (k)(0):

Remark 2.2.7 Note the absence of generalization for the derivative of the product and

the composition of two functions. These characteristics of the classical derivative actually

transfer poorly to the fractional. Regardless of the de�nition used and even with restrictions

on functions

D�(fg) 6= D�(f)g + fD�(g);

D�

�
f

g

�
6= D�(f)g � fD�(g)

g2
;

D�(f � g) 6= D�(f) (g) :g0:
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