Chapter 3

Fractional differential equations

In this chapter, we present the different types of fractional differential equations (FDEs) in
particular, the Riemann-Liouville type fractional differential equation and the Caputo type

fractional differential equation.
Definition 3.0.9 Leta>0,a ¢ N n=|a]+1 and f: A CR? = R, then
Du(t) = f(t, u(t)), (3.0.1)

1s called a fractional differential equation of the Riemann-Liouville type. The initial condi-

tions for this type of FDE, we use
D u(0) = by, k= 0,1,2,....n — L HmI""u(t) = b,.
In the same way
“Du(t) = f(t u(t)), (3.0.2)

1s called a fractional differential equation of the Caputo type, and in this case we use the
wnitial conditions as

u®(0) = b, k=0,1,2,...,n — 1.

The use of initial conditions of different types for the fractional differential equations
(3.0.1) and (3.0.2) ensures the uniqueness of the solutions of the corresponding FDE, which

we will prove in the following theorems
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3.1. Fractional differential equation of the Riemann-Liouville type

3.1 Fractional differential equation of the Riemann-
Liouville type
We start with the homogeneous equation of Riemann-Liouville type.

Lemma 3.1.1 Let « > 0. If we assume that v € C(0,1) N L*(0,1), then the fractional

differential equation of the Riemann-Liouville type
Dgru(t) =0,0 <t <1, (3.1.1)
admits a unique solution
u(t) = Crt* 4 Cot® 2 4 ..+ Cpt* ™",
where C,, € R with m =1,2,...,n.
Proof. Let a > 0. According to Remark 2.2.2, we have
Dt =0 withm = 1,2, ..., n.
Then the fractional differential equation (3.1.1), admits a particular solution, as
u(t) = Cpt® ™ with m = 1,2, ..., n, (3.1.2)

where C,, € R.

So the general solution of (3.1.1) given as a sum of particular solutions (3.1.2) i.e.
u(t) = Ot L 4 Cot* 2 ..+ Cpt™™™,
where C,, e Rwithm =1,2,...n. m
Lemma 3.1.2 Suppose that
u € C(0,1)NLY0,1) and DS u € C(0,1) N LY(0, 1).

Then
& DSu(t) = u(t) + Crt™ ' + Cot* 2 4 .+ Cpt™ ™™, (3.1.3)

where C,,, € R withm =1,2,...,n.
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3.1. Fractional differential equation of the Riemann-Liouville type

Proof. Let a > 0. For all u € C(0,1) N L*(0,1) (Proposition 2.2.3) we have

n Ig_’_—au(n—k)(o) tosz
~T(a—k+1)
Lo (0) I (0)

a1 - Iy~ “ut"(0)
= u(t)— {Tt +Wt +...+mt

o+ Doru(t) = u(t) =

It (0)
T T(a—m+1)

We put C,, € R for each m = 1,2, ..., n, we find the equality (3.1.3). m

Lemma 3.1.3 Let 1 <a <2 andy € C(0,1).

So the unique solution to the boundary problem

Dg.u(t) +y(t) =0,0<t <1

(3.1.4)
w(0)=u(1)=0
18 given by )
ut) = [ Gt op(s)ds,
0
such as
a—1 oa—
H=a)” (=9 gig<s<t<1
G(t,s) = Y
Mo si0<t<s<l
Proof. By applying I, to equation (3.1.4) we obtain
o+ [Dg=ult) +y(1)] = 0 <= Ig: Dgru(t) + Igry(t) = 0.
According to Lemma 3.1.2 for 1 < a <2 (n = [a] + 1 = 2) we have
D0+U< ) (t) + Cltail + Cgta72, Cl, CQ S R,
SO
u(t) + C1t* ' 4+ Cot* 2 + I8 y(t) = 0,
which implies
u(t) = —Igy(t) — Cit* ™t — Cot* 2
Therefore, the general solution of equation (3.1.4) given by
1 ' 1 1 2
u(t) = ——/ (t — ) y(s)ds — C1t*" — Cot* ™=, (3.1.5)
I'(a) Jo
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3.2. Fractional differential equation of the Caputo type

The boundary conditions imply that

w(0) =0= 0= —0— 0 — imCyt*2 Cy =0
=0 — ) .
uw0)=1=0= —ﬁ fol(l —s)* ty(s)ds — C4 C, = —ﬁ Jo (L =s)*"1y(s)ds

The integro-differential equation (3.1.5), equivalent to

u(t) = —ﬁ /0 (t—s)o‘_ly(s)ds%—% /0 (1— 8)*y(s)ds
1 a—1 a—1

' a—1 t ' a—1 ' a—1
— _m/o (t —s) y(8>dS+F(a)/o(1_S) y(s)ds—l—r(a)/t (1 —5)*y(s)ds

R O et U e G (LB g
_ / o y(s)ds + / et
d

e
- / G(t, 5)y(s)

S.

3.2 Fractional differential equation of the Caputo type
We start with the homogeneous equation of Caputo type.

Lemma 3.2.1 Let o > 0. If we assume that u € C(0,1) N L'(0,1), then the fractional
differential equation of the Caputo type

“Dgiu(t) =0,0<t <1, (3.2.1)
admits a unique solution
u(t) = Co + Ort + Cot* + ... + Cpqt™ 1,
where C,, € R with m =20,1,2,....n — 1.
Proof. Let a > 0. According to Remark 2.2.5, we have
Dgit"™ =0 withm =0,1,2,...,n — 1.
Then the fractional differential equation (3.2.1), admits a particular solution, as

u(t) = Cpt™ with m = 0,1,2,...,n — 1, (3.2.2)
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