
Chapter 1

Sets, relations and applications

Notations :

:=: means "define"; ∈: "belongs to" a ∈ S means that "a is an element in S.";
∃ : means "there exists"; ∃! : means "there exists a unique";

∀ : "for all"; /∈: "does not belong to";

⊂: "contained in"; ⊆: "content or equal to";

*: ‹‹is not contained in››; ∀ : means "for all";

⇒: means "implies"; ⇐⇒; means "if and only if."

You already know a some famous sets :

· Set of Natural Numbers is denoted by N (N ={0, 1, 2, 3, ...}).

· Set of Integers is denoted by Z (Z ={...,−2,−1, 0, 1, 2, ...}).

· Set of Rational Numbers is denoted by Q (Q ={p
q
� p ∈ Z, p ∈ (N∗}).

· Set of Real Numbers is denoted by R for example : 1,
√

3, Π, ln 3,...

· The set of complex numbers C for example : 1 + 3i,...

We will try to see the properties of sets, without focusing on a particular example.

You will quickly realize that what is at least as important as sets are the relations

between sets : this will be the notion of application (or function) between two sets.
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1.1 Sets

1.1.1 Define sets

I A set is a collection of objects that verify certain properties. An object which satisfies
the needed rules is called element of the set. If the set is denoted by A and x is an

element of A we say x belongs to A and we write x ∈ A

Example 1.1.1 (i) A = {0, 1}. This means that the set A consists of two elements, 0

and 1.

(ii) B = {x ∈ R : −3lx 6 2} = ]−3, 2] .

(iii) C = {0, {1}, {0, 1}}. The set C contains three elements: the number 0; the set

{1} containing one element, namely the number 1; and the set containing two elements,

the numbers 0 and 1.

I The order in which the elements are listed is not important. Like this {0, 1} =

{1, 0}. An element may occur more than once. So {1, 2, 1} = {1, 2}. But {1, 2, {1}} 6=
{1, 2}!

A set can be also specified by an elementhood test.

1.1.2 cardinality of a finite set

If a set A contains a finite number of elements it is said to be finite, otherwise it is said to

be infinite. If A is finite and it contains n ∈ N elements, then n is called the cardinality
of A we write card A = n or |A| = n. If n = 0 the set A is called an empty set and is

denoted by ∅ and we have card A = 0 .

Definition 1.1.2 The empty set is the set which contains no elements, and is denoted
by ∅.

In the previous example B is infinite set, |A| = 2 and |C| = 3.

1.1.3 Operations on sets

Now we introduce operations on sets. The main operations are: Inclusion, union, inter-

section, difference and symmetric difference.

Definition 1.1.3 1. A set A is a subset of B, A ⊂ B, if every element of A is in B.

Given A ⊂ B, if a ∈ A =⇒ a ∈ B.
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2. Two sets A and B are equal, A = B, if A ⊂ B and B ⊂ A.
3. A set A is a proper subset of B, A  B if A ⊂ B andA 6= B

Thus, one way to show that two sets, A and B, coincide is to show that each element

in A is contained in B and vice-versa.

Example 1.1.4 We have N ⊂ Z ⊂ Q ⊂ R

Definition 1.1.5 The union of sets A and B is the set containing the elements of A

and the elements of B, and no other elements.

Notation 1 We denote the union of A and B by A ∪B.

Note: existence of the union for arbitrary A and B is accepted as an axiom.

For arbitrary x and arbitrary A and B the following proposition is true.

(x ∈ A ∪B)⇔ (x ∈ A) ∨ (x ∈ B).

Definition 1.1.6 The intersection of sets A and B is the set containing the elements

which are elements of both A and B, and no other elements.

We denote the intersection of A and B by A∩B. Thus for arbitrary x and arbitrary
A and B the following proposition is true.
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(x ∈ A ∩B)⇔ (x ∈ A) ∧ (x ∈ B).

Note: When A ∩B = ∅, then A and B are said to be disjoint.

Definition 1.1.7 The difference of sets A and B is the set containing the elements of

A which do not belong to B.

We use the notation A − B for the difference or the complement of B with respect

to A (A\B). The following is true for arbitrary x and arbitrary A and B :

(x ∈ A−B)⇔ [(x ∈ A) ∧ ( /x ∈ B)].

Definition 1.1.8 The symmetric difference of the sets A and B is defined by

A4B = (A−B) ∪ (B −A).

Definition 1.1.9 Suppose that A ⊂ U . The complement of the set A in U denoted by

Ac, {U (A) or Ā, is the set of all elements of U that are not in A. That is Ac ={x ∈ U,
x /∈ A}.
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Let us illustrate these operations with a simple example.

Example 1.1.10 Let U = N, A = {0, 1, 2, 3, 4, 5} and B = {1, 3, 5, 7, 9}. Then

A ∪B = {0, 1, 2, 3, 4, 5, 7, 9}.
A ∩B = {1, 3, 5}.
A−B = {0, 2, 4}.
B −A = {7, 9}.
A4B = {0, 2, 4, 7, 9}.
Ac = {k : k ∈ N and k ≥ 6} = {6, 7, ...}

Note that

A ∪B = (A ∩B) ∪ (A4B)

1.1.4 Laws for operations on sets

Let A, B be subsets of an universal set U
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A few demonstrations * A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)?

x ∈ A ∩ (B ∪ C) ⇔ (x ∈ A and x ∈ (B ∪ C))

⇔ (x ∈ A and (x ∈ B or x ∈ C))

⇔ ((x ∈ A and x ∈ B) or (x ∈ A and x ∈ C))

⇔ ((x ∈ A ∩B) or (x ∈ A ∩ C))

⇔ x ∈ (A ∩B) ∪ (A ∩ C).

Then A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

* A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)?

(x ∈ A ∪ (B ∩ C))⇔ (x ∈ A or x ∈ B ∩ C)

⇔ (x ∈ A or(x ∈ B and x ∈ C))

⇔ ((x ∈ A or x ∈ B) and (x ∈ A or x ∈ C))

⇔ (x ∈ A ∪B and x ∈ A ∪ C)

⇔ x ∈ (A ∪B) ∩ (A ∪ C)

Then A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

* {U (A ∩B) = {U (A) ∪ {U (B) and {U (A ∪B) = {U (A) ∩ {U (B)?
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-
(
x ∈ {U (A ∩B)

)
⇔ (x /∈ A ∩B)⇔ (x /∈ A or x /∈ B)

⇔
(
x ∈ {U (A) or x ∈ {U (B)

)
⇔
(
x ∈ {U (A) ∪ {U (B)

)
Therefore {U (A ∩B) = {U (A) ∪{U (B)

-
(
x ∈ {U (A ∪B)

)
⇔ (x /∈ A ∪B)⇔ (x /∈ A and x /∈ B)

⇔
(
x ∈ {U (A) and x ∈ {U (B)

)
⇔
(
x ∈ {U (A) ∩ {U (B)

)
.

Therefore {U (A ∪B) = {U (A) ∩{U (B).

* {U
(
{U (A)

)
= A?(

x ∈ {U
(
{U (A)

))
⇔
(
x /∈

(
{U (A)

))
⇔
(
x ∈ {U (A)

)
⇔ (x /∈ A)

⇔ x ∈ A.

1.1.5 Set of parts.

Definition 1.1.11 Let E be a set, we form a set called the set of parts of E, denoted

P (E) which is characterized by the following relation P (E) = {A : A ⊂ E}

Example 1.1.12 Let E = {0, 1, 2}. Then

P (E) = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}} .

Remark 1.1.13 If card (A) = n then card (P (A)) = 2n..

Example 1.1.14 - If E = {a, b},then

P (E) = {∅, {a}, {b}, {a, b}} ,

as card (E) = 2, then card (P (E)) = 22 = 4

-If E = {a}, then P (A) = {∅, {a}} .

1.1.6 Cartesian product

Definition 1.1.15 . Let A and B be sets. The Cartesian product of A and B, denoted

by A×B, is the set of all ordered pairs (a, b) in which a ∈ A and b ∈ B, i.e.
A×B = {(a, b) : (a ∈ A) ∧ (b ∈ B)}.
Thus

(p ∈ A×B)⇔ {(∃a ∈ A)(∃b ∈ B)[p = (a, b)]}.
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Example 1.1.16 (i) If A = {red, green} and B = {1, 2, 3} then

A×B = {(red, 1), (red, 2), (red, 3), (green, 1), (green, 2), (green, 3)}.

(ii) Z × Z = {(x, y)| x and y are integers}. This is the set of integer coordinates
points in the x, y−plane. The notation Z2 is usually used for this set.

Example 1.1.17 If E = {1, 2} and F = {3, 5}, then

E × F = {(1, 3), (1, 5), (2, 3), (2, 5)}
F × E = {(3, 1), (3, 2), (5, 1), (5, 2)}

E × F 6= F × E

Example 1.1.18 1) R2 = R× R = {(x, y) : x, y ∈ R}
2) [0, 1]× R = {(x, y) : 0 ≤ x ≤ 1, y ∈ R}

Example 1.1.19 [0, 1]× [0, 1]× [0, 1] = {(x, y, z) : 0 ≤ x, y, z ≤ 1}

Notation 2 Let E2be the Cartesian square of E. More generally, we define the Cartesian
product of n sets E1, E2, ...,En by

E1 × E2 × ...× En = {(x1, x2, ..., xn) : xi ∈ Ei , for i = 1, ..., n}.

Example 1.1.20 If E = {1, 2}, then

E2 = E × E = {(1, 1), (1, 2), (2, 1), (2, 2)}
E3 = E × E × E = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 2, 1), (2, 1, 2), (2, 2, 2)}
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Proposition 1.1.21 let E and F be two finite sets.Then

card (E × F ) = card (E)× card (F )

The following theorem provides some basic properties of the Cartesian product.

theorem 1.1.22 LetA,B,C,D be sets. Then

a) A× (B ∩ C) = (A×B) ∩ (A× C),

b) A× (B ∪ C) = (A×B) ∪ (A× C),

c) (A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D),

d) (A×B) ∪ (C ×D) ⊆ (A ∪ C)× (B ∪D),

e) If A or B are empty sets ((A = ∅ and B 6= ∅) or (B = ∅ and A 6= ∅) or (A = ∅
and B = ∅)), then A×B = ∅.

proof. (a) (⇒)

Let p ∈ A× (B ∩ C). Then

(∃a ∈ A)(∃x ∈ B ∩ C)[p = (a, x)]

In particular,

(∃a ∈ A)(∃x ∈ B)[p = (a, x)] and (∃a ∈ A)(∃x ∈ C)[p = (a, x)]

So p ∈ (A×B) ∩ (A× C).

(a) (⇐)

Let p ∈ (A×B) ∩ (A× C). Then

p ∈ (A×B) and p ∈ (A× C).

So

(∃a ∈ A)(∃b ∈ B)[p = (a, b)] and (∃à ∈ A)(∃c ∈ C)[p = (à, c)]

But then (a, b) = p = (à, c) and hence a = à and b = c. Thus p = (a, x) for some

a ∈ A and x ∈ B ∩ C, i.e.p ∈ A× (B ∩ C). This proves (a) .
The proof of (b), (c), (d) and (e) are left as exercises.

1.2 Relations, Equivalence Relation

1.2.1 Relations

Definition 1.2.1 We call the relation R from E to F any part of the Cartesian product

E × F . The domain of R is the set

D(R) = {x ∈ E : ∃y ∈ F [(x, y) ∈ R]}.
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The range of R is the set

Ran(R) = {y ∈ F : ∃x ∈ E[(x, y) ∈ R]}.

If E = F , we say that R is a binary relation on E.

The inverse of R is the relation R−1 from F to E defined as follows

R−1 = {(y, x) ∈ F × E : (x, y) ∈ R}.

The graph of this relation is:

GR = {(x, y) ∈ E × F : x R y }

Example 1.2.2 (i) Let A = {1, 2, 3}, B = {3, 4, 5}. The set R = {(1, 3), (1, 5), (3, 3)}
is a relation from A to B since R v A×B.

(ii) G = {(x, y) ∈ Z× Z : x > y} is a relation from Z to Z.

Example 1.2.3 Let A = {1, 2, 3, 4, 5, 6} a set and the relation R defined by

xRy ⇔ x divide y (in Z)

GR = {(x, y) ∈ A×A, x divide y }

= {(1, 1) , (1, 2) , (1, 3) , (1, 4) , (1, 5) , (1, 6) , (2, 2) , (2, 4) , (2, 6) , (3, 3) , (3, 6) , (4, 4) , (5, 5) , (6, 6)} .

Definition 1.2.4 Let R be a binary relation over a set E. For all x, y, z ∈ E, we say
that R is

(1) Reflexives, if each element is related to itself, i.e

.xRx, ∀x ∈ E

(2) Symmetric, if for all x, y ∈ E, if x is related to y then y is related to x,

i.e.xRy ⇒ yRx,∀x, y ∈ E.
(3) Transitive, if for all x, y, z ∈ E, if x is in relation to y and y in relation to z

then x is in relation to z, i.e. (xRy and yRz)⇒ xRz,∀x, y, z ∈ E.
(4) Anti-symmetric, if two elements are related to each other, then they are equal,

i.e.

(xRy and yRx)⇒ x = y,∀x, y ∈ E.

A particularly important class of relations are equivalence relations.
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1.2.2 Equivalence Relation

Definition 1.2.5 A relation R on E is called equivalence relation if it is reflexive,

symmetric and transitive.

Example 1.2.6 (i) Let E be a set of students. A relation on E × E: “to be friends”.
It is reflexive (I presume that everyone is a friend to himself / herself). It is symmetric.

But it’s not transitive.

(ii) Let E = Z,a ∈ N. Define R ⊆ E × E as

R = {(x, y) : |x− y| ≤ a}.

R is reflexive, symmetric, but not transitive.

(iii) Let E = Z, m ∈ N . Define the congruence modm on E × E as follows:

x ≡ y if (∃k ∈ Z : x− y = km).

This is an equivalence relation on E.

Definition 1.2.7 Let R be an equivalence relation on E.

1. The equivalence class of an element x in E is the set of all elements y ∈ E that

are in relation with x we denote this set by . ẋ or x̄ or C(x),and we write it as follow

ẋ = x̄ = C(x) = {y ∈ E : yRx}.

2. x̄ is a representative of the equivalence class C(x).

3. The set of equivalence classes for all elements in E is called the ”quotient set”of

E for the equivalence relation R. It is denoted as E/R, and written as follows:

E/R = {C(x) : x ∈ E}.

Example 1.2.8 In R we define the relation R by:

xRy ⇔ x− y ∈ Z.

This relation is indeed a relation of equivalence. Indeed,

• For x ∈ R : xRx⇔ 0 ∈ Z, as 0 ∈ Z, then xRx,∀x ∈ R, so R is a reflexive relation.
• For x, y ∈ R, we have (xRy) ⇔ (x − y ∈ Z) ⇔ (y − x ∈ Z) ⇒ yRx, then R is a

symmetric relation.

• For x, y, z ∈ R, we have
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(xRy and yRz) ⇒ (x− y ∈ Z and y − z ∈ Z)

⇒ (x− y + y − z ∈ Z)

⇒ (x− z ∈ Z)⇒ (xRz),

then R is a transitive relation.

Therefore, the set of equivalence classes C(x) is the set

C(x) = {y ∈ R : y − x ∈ Z}

= {y ∈ R : y ∈ x+ Z}

= {y ∈ R : y = k + x : k ∈ Z}

= {k + x : k ∈ Z},

if x ∈ Z, we have C(x) = Z.

Example 1.2.9 Let us consider the relation R defined on R by :

∀x, y ∈ R, xRy ⇔ xey = yex

Prove that R is an equivalence relation.

Solution 1.2.10 show that R is reflexive, symmetric and transitive.

1.∀x ∈ R on a xex = xex. In other words, we have xRx and then R is reflexive.

2. R is symetric . In fact, let x, y ∈ R, such that xRy, hence we have

xRy ⇒ xey = yex,

⇒ yex = xey,

⇒ yRx,

3. R is transitive because for all x, y, z ∈ R, such that [(xRy) ∧ (yRz)],
on a :

xRy ⇒ xey = yex................(1)

yRz ⇒ yez = zey................(2)

(2) gives y =
zey

ez
, moreover, using (1) and by substituting y we have xey =

zey

ez
ex

hence xeyez = zeyex. Since ey 6= 0 Thus xez = zex, which implies xRz.
4. R is reflexive, symetric and transitive then it is an equivalence relation.
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1.2.3 Order Relation

Definition 1.2.11 A binary relation R over E is said to be an order relation if it is

antisymmetric, transitive and reflexive

Example 1.2.12 On R the relation ≤ is an order relation. In fact
- R reflexive

∀x ∈ R, xRz ⇔ x = x.

- R antisymmetric, if only if:

∀ (x, y) ∈ R× R; (xRy ⇔ x ≤ y) and (yRx⇔ y ≤ x)⇔ x = y.

-R transitive, if only if :

∀ (x, y, z) ∈ R× R× R; (xRy ⇔ x ≤ y) and (yRz ⇔ y ≤ z)⇔ x ≤ z ⇔ xRz.

- In R, the relation < is not a relation of order ( is not reflexive.)

1.2.4 Total order and partial order

Definition 1.2.13 Let R be a relation of order defined on a set E, we say that R is

total, if for all x, y ∈ E, we have

xRy or yRx.

Otherwise, we say that R is partial, i.e.

∃x, y ∈ E : neither xRy nor yRx

Example 1.2.14 A = {1, 2, 3, 4, 5, 6} with

aRb⇔ a divide b

is a partial order relation (is not total)

Indeed 2 and 3, for example, are not comparable : 2 does not divide 3 and 3 does not

divide 2.

Example 1.2.15 Let A be a non-empty set and R a relation on A defined by :

∀a, b ∈ A, aRb⇔ a = b.

R is a an order relation on A.

If A is a singleton, then the order is total. If not, the order is partial.
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1.3 Applications

1.3.1 Denition of an application

Definition 1.3.1 Let E and F be given sets, we call the application of E in F , any

correspondence f between the elements of E and those of F which associates to any

element of E one and only element of F , we write

f : E → F

x −→ f (x)

or f( application )⇔ (∀x ∈ E)(∃!y ∈ F ) : y = f(x)

The set E is said to be the starting set and F is said to be the end set.

The element x is said to be the antecedent and y is said to be the image of x by f .

The map f is said to be a function if, for each x ∈ E, there exists at most y ∈ F such

that f(x) = y.

Remark 1.3.2 (1) The application from E to F is that ⇔ every element x of E has

a unique image in F.

(2) If f is an application from E to F , then the element y of F can have more than

one precedent in E.

(3) We must defferentiate between f (x) and f : we have f (x) ∈ F , while f repres-
ents the application as a whole, and it belongs to the space of applications defened from

E to F.

Example 1.3.3 We have A = {1, 2, 3} and B = {7, 9, 13}.
• We have f (3) = 9, f (2) = 9; f (1) = 7.

• f application from A to B every element x of A has a unique image in B.

• This element 13 has no precedent according to the application.

• This element 9 has two precedent : 2 and 3.
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Definition 1.3.4 (Graph). Let E and F be given sets. The graph of a map f : E → F

is

Gf := {(x, f(x)) : x ∈ E} ⊂ E × F.

Definition 1.3.5 (Equality). Let f, g : E → F be the applications. We say that f , g

are equal if and only if for all x ∈ E : f(x) = g(x). We then write f = g.

Definition 1.3.6 (Composition). Let E, F and G be three sets and f and g two maps

such as

E
f−→ F

g−→ G

We can deduce from this a map of E in G denoted g ◦ f and called a map composed of f
and g, by

(g ◦ f)(x) = g(f(x)), for all x ∈ E.

Example 1.3.7 Let f : Z → Z, g : Z → Z,

f(x) = x2 + 2, g(x) = 2x− 1.

Find (f ◦ g)(x) and (g ◦ f)(x).

Solution : we have

(f ◦ g)(x) = f(g(x)) = g(x)2 + 2 = 4x2 − 4x+ 3,

(g ◦ f)(x) = g(f(x)) = 2f(x)− 1 = 2x2 + 3.

As you clearly see from the above,f ◦ g 6= g ◦ f in general.

Definition 1.3.8 Let E be a set, we call an identity map, denoted IdE : E → E is the

map that verifies IdE(x) = x, ∀x ∈ E.

Definition 1.3.9 Let f : E → F be a function. The domain of denition of f , denoted

Df , is the set of elements x ∈ E in which there exists a single element y ∈ F , such that
y = f(x).

Example 1.3.10 Let f : R→ R denied by f(x) =
√
x+ 1, then

Df = {x ∈ R : x+ 1 ≥ 0} = [−1,+∞[.
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1.3.2 Restricting and extending an application

Definition 1.3.11 Let A ⊂ E and f : E → F be an application. We call the restriction

from f to A, the map f/A : E → F denied by

f/A(x) = f(x), for all x ∈ A.

Definition 1.3.12 Let E ⊂ G and f : E → F a map. We call an extension from f to

G, any map g from G to F whose restriction to E is f .

Example 1.3.13 Given the applicationf :

f : R∗+ → R

x → lnx
,

then
g : R∗ → R

x → ln |x|
,
h : R∗ → R

x → ln (|3x| − 2x)
,

are two different extensions of f to R∗.

1.3.3 Direct image and inverse image

Definition 1.3.14 Let A , B be non-empty sets. Let E be a subset of A, and f : A→ B

be application. The direct image of the set E is defined by :

f (E) = {f (x) : x ∈ E}

Example 1.3.15 Let f : Z→ Z defined by f(x) = x2. Let

A = {x ∈ Z : 0 ≤ x ≤ 2}.

Then f(A) = {0, 1, 4}.

Definition 1.3.16 Let A , B be non-empty sets, let F be a subset of B, and f : A→ B

be application. The inverse image of the set F is defined by :

f−1 (F ) = {x ∈ A : f (x) ∈ F}
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Example 1.3.17 Let f : Z → Z defined by f(x) = x2, let B = {y ∈ Z : y ≤ 10}. Then
f−1(B) = {−3,−2,−1, 0, 1, 2, 3}.

theorem 1.3.18 Let f : X → Y and A1 ⊂ X, A2 ⊂ X, B1 ⊂ Y , B2 ⊂ Y . Then
(i) ) A1 ⊂ A2 ⇒ f(A1) ⊂ f(A2) and B1 ⊂ B2 ⇒ f−1(B1) ⊂ f−1(B2).
(ii) f (A1 ∩A2) ⊂ f(A1) ∩ f(A2) and f−1 (B1 ∩B2) = f−1(B1) ∩ f−1(B2).
(iii) f (A1 ∪A2) = f(A1) ∪ f(A2) and f−1 (B1 ∪B2) = f−1(B1) ∪ f−1(B2).
(iiii) A1 ⊂ f−1 (f(A1)) and f

(
f−1(B1)

)
⊂ B1.

1.3.4 Injective, surjective and bijective application

Definition 1.3.19 Let f : E → F . f is said to be injective if and only if :

∀ (x1, x2) ∈ E2 : f(x1) = f(x2)⇒ x1 = x2

Example 1.3.20
f : R+/ {2} −→ R

x −→ 1

x2 − 4

is an injective application because we have :

∀ (x1, x2) ∈
(
R+/ {2}

)2
: f(x1) = f(x2)⇔

1

x21 − 4
=

1

x22 − 4
⇔ x21 = x22 ⇔ x1 = ±x2,

but as x1, x2 ∈ R+/ {2} then x1 = x2.

Definition 1.3.21 Let f : E → F . We say that f is surjective if and only if: for all

y ∈ F , there exists x ∈ E such that f(x) = y, i.e.

∀y ∈ F , ∃x ∈ E : y = f(x).

Example 1.3.22 Let f : Z→ N.be the map defined by f(x) = |x|, then f is surjective.
Indeed, let y ∈ N, for x = y or x = −y, we have x ∈ Z and f(x) = |x| = y, so there

exists x ∈ Z such that y = f(x).
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Definition 1.3.23 Let f : E → F . f is said to be bijective if and only if: f is both

injective and surjective. This is equivalent to : for all y ∈ F there exists a unique x ∈ E
such that y = f(x). In other words:

∀y ∈ F , ∃!x ∈ E : y = f(x).

Example 1.3.24 Let f : R → R, defined by f(x) = x + 1, then f is bijective. Indeed,

let y ∈ R, such that f(x) = y, then x = y − 1, so there exists a unique x in R such that
y = f(x).

Remark 1.3.25 If the application f is bijective, then to every y ∈ F we match a single

element x ∈ E.

Definition 1.3.26 Let f : E → F be a bijective function. We define the function

f−1 : F → E, called the reciprocal function of f , given by f−1(x) = y if and only if

f(y) = x.

Example 1.3.27 Let f be the map defined by f(x) = x2 + 1 of R+ → [1,+∞[, then f

is bijective, because for all y ∈ [1,∞[, the equation y = f(x) admits a single solution

x =
√
y − 1. The reciprocal bijection is f−1 : [1,+∞[→ R+ defined by:

f−1(x) =
√
x− 1 for all x ∈ [1,+∞[.

Proposition 1.3.28 Let E, F be sets and f : E → F an application.

• The map f is bijective if and only if there is a map g : F → E such that

f ◦ g = IdF and g ◦ f = IdE .

• Let f : E → F and g : F → G be bijective maps. The map g ◦ f is bijective and its
reciprocal bijection is

(g ◦ f)−1 = f−1 ◦ g−1.

1.4 Some methods of proof

1. First we discuss a couple of widely used methods of proof: contrapositive proof

and proof

by contradiction.

The idea of contrapositive proof is the following equivalence
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(A⇒ B)⇔ (B̄ ⇒ Ā).

So to prove thatA⇒ B is true is the same as to prove that B̄ ⇒ Ā is true.

Example 1.4.1 For integers m and n, if mn is odd then so are m and n.

proof. We have to prove that

(∀m,n ∈ Z+)(mn is odd)⇒ [(m is odd) ∧ (n is odd)],

which is the same as to prove that

[(m is even) ∨ (n is even)]⇒ (mn is even)

The latter is evident.

The idea of proof by contradiction is the following equivalence

(A⇒ B)⇔ (Ā ∨B)⇔ (A ∧ B̄)

So to prove that A⇒ B is true is the same as to prove that Ā∨B is true or elsethat

A ∧ B̄ is false.

2 The Principle of Mathematical Induction is often used when one needs to prove

statements of the form

(∀n ∈ N) P (n).

Thus one can show that 1 has property P and that whenever one adds 1 to a

number that has property P , the resulting number also has property P .

Principle of Mathematical Induction. If for a statement P (n)

(i) P (1)is true,

(ii) [P (n)⇒ P (n+ 1)] is true,

then (∀n ∈ N) P (n) is true.

Part (i) is called the base case; (ii) is called the induction step.

Example 1.4.2 Prove that

∀n ∈ N : 12 + 22 + 32 + ···+ n2 =
n(n+ 1)(2n+ 1)

6
.
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Solution: Base case: n = 1. 12 =
1·2·3

6
is true.

Induction step: Suppose that the statement is true for n = k(k ≥ 1). We have to

prove thatit is true for n = k + 1. So our assumption is

12 + 22 + 32 + ···+ k2 =
k(k + 1)(2k + 1)

6
.

Therefore we have1

12 + 22 + 32 + ···+ k2 + (k + 1)2 =
(k + 1)(k + 2)(2k + 3)

6
,

which proves the sta tement for n = k + 1. By the principle of mathematical induction

thestatement is true for all n ∈ N.


