Chapter 1

Sets, relations and applications

Notations :

:=: means "define"; €: "belongs to" a € S means that "a is an element in S.";
d: means "there exists"; ! : means "there exists a unique";

v : "for all"; ¢: "does not belong to";

C: "contained in"; C: "content or equal to";

¢: <<is not contained in>>; V : means "for all";

=: means "implies"; <=; means "if and only if."

You already know a some famous sets :

- Set of Natural Numbers is denoted by N (N ={0,1,2,3,...}).
- Set of Integers is denoted by Z (Z ={...,—2,-1,0,1,2,...}).

- Set of Rational Numbers is denoted by Q (Q :{22 /S pEZL,pe (N*}).
q

- Set of Real Numbers is denoted by R for example : 1, v/3, II, In 3,...

- The set of complex numbers C for example : 1+ 3i,...

We will try to see the properties of sets, without focusing on a particular example.
You will quickly realize that what is at least as important as sets are the relations

between sets : this will be the notion of application (or function) between two sets.
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1.1 Sets

1.1.1 Define sets

» A set is a collection of objects that verify certain properties. An object which satisfies
the needed rules is called element of the set. If the set is denoted by A and z is an

element of A we say x belongs to A and we write x € A

Example 1.1.1 (i) A ={0,1}. This means that the set A consists of two elements, 0
and 1.

(ii)) B={zr e R: —3<zx < 2} =]-3,2].

(iii) C ={0,{1},{0,1}}. The set C contains three elements: the number 0; the set
{1} containing one element, namely the number 1; and the set containing two elements,

the numbers 0 and 1.

» The order in which the elements are listed is not important. Like this {0,1} =
{1,0}. An element may occur more than once. So {1,2,1} = {1,2}. But {1,2,{1}} #

{1,2}!
A set can be also specified by an elementhood test.
1.1.2 cardinality of a finite set

If a set A contains a finite number of elements it is said to be finite, otherwise it is said to
be infinite. If A is finite and it contains n € N elements, then n is called the cardinality
of A we write card A =n or |A] =n. If n = 0 the set A is called an empty set and is

denoted by () and we have card A =10 .

Definition 1.1.2 The empty set is the set which contains no elements, and is denoted
by 0.

In the previous example B is infinite set, |A| = 2 and |C| = 3.

1.1.3 Operations on sets

Now we introduce operations on sets. The main operations are: Inclusion, union, inter-

section, difference and symmetric difference.

Definition 1.1.3 1. A set A is a subset of B, A C B, if every element of A is in B.
Given AC B, ifa € A= a € B.
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2. Two sets A and B are equal, A= B, if AC B and B C A.
3. A set A is a proper subset of B, AC B if AC B andA # B

Thus, one way to show that two sets, A and B, coincide is to show that each element
in A is contained in B and vice-versa.

Example 1.1.4 We have N CZ C Q C R

Definition 1.1.5 The union of sets A and B is the set containing the elements of A
and the elements of B, and no other elements.

Notation 1 We denote the union of A and B by AU B.

Note: existence of the union for arbitrary A and B is accepted as an axiom.

For arbitrary x and arbitrary A and B the following proposition is true.

(re AUB)< (€ A)V (z € B).

AUB={z:xz€ Aorzx € Bj

Definition 1.1.6 The intersection of sets A and B is the set containing the elements
which are elements of both A and B, and no other elements.

We denote the intersection of A and B by AN B. Thus for arbitrary z and arbitrary
A and B the following proposition is true.
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(re ANB)< (€ A)A(z € B).

QQD ANB={z:z€ Aand z € B}

Note: When AN B =, then A and B are said to be disjoint.

Definition 1.1.7 The difference of sets A and B is the set containing the elements of
A which do not belong to B.

We use the notation A — B for the difference or the complement of B with respect
to A (A\B). The following is true for arbitrary = and arbitrary A and B :

(xe A-—B)<[(re A) A (¥ € B).

@ > A\B={zr€ A:x ¢ B)

Definition 1.1.8 The symmetric difference of the sets A and B is defined by

AAB = (A - B)U (B — A).

Definition 1.1.9 Suppose that A C U. The complement of the set A in U denoted by
A¢, Cy (A) or A, is the set of all elements of U that are not in A. That is A° ={z € U,

x ¢ A}
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Let us illustrate these operations with a simple example.

Example 1.1.10 Let U =N, A=1{0,1,2,3,4,5} and B ={1,3,5,7,9}. Then

AUB = {0,1,2,3,4,5,7,9}.

ANB = {1,3,5).

A—-B = {0,2,4}.

B-A = [7,9}.

AAB = {0,2,4,7,9).

A = {k:keNandk>6} ={6,7,...}

Note that

AUB = (ANB)U(AAB)

1.1.4 Laws for operations on sets

Let A, B be subsets of an universal set U
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Idempotent Laws (AJAUA=A (b)AnA=A
Associative Laws (@A)(AuB)uC=Au(BUCQ b)(AnB)NnC=An(BnCQ
Commutative Laws (@AUB=BUA (b)AnB=BnA
Distributive Laws @AuUBNnC)=AuB)n(AuQ) (b)An(BuC)=(AnB)U(ANCQ)
De Morgan's Laws (a) (A UB)¢=A‘n B¢ (b) (A NB)*=AfuU B€
Identity Laws @ Aud=A (AN U=A
(b)AuU=U dANG=0
Complement Laws (@) AUA®=U (QU=0
(b) AN A= 0 (d) ot =U
Involution Law (a) (AS)C = A

A few demonstrations * AN(BUC)=(ANB)U(ANC)?
re€AN(BUC) < (zeAandze (BUQ))
& (re€eAand (reBorzel))
< ((xeAandx e B)or (xre Aand zeC))
S ((zeAnB)or (ze ANC))
szxe(ANB)UANCQC).
Then AN(BUC)=(ANB)U(ANC).
*Au(BNC)=(AUB)N(AUQC)?
(xe AU(BNC)) < (reAorxe BNO)
< (xeAor(x € Band x € C))
& ((xeAorxeB)and (x € Aor z € C))
& (reAUBandx e AUC)
sre(AUB)N(AUCQC)
Then AU(BNC)=(AUB)N(AUCQC)
*Cy(ANB) =Ly (A) Uly(B) and Cy(AU B) = Cy(A)NCy(B)?
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-(z€ly(AnB)) e (x¢ ANB) < (x¢ Aorz ¢ B)
& (2 €ly(A) or z € Cy(B) )
& (zely(A) uly(B))
Therefore Cy(AN B) =Cy(A4) UCy(B)
-(z€ly(AUB)) & (¢ AUB) < (z ¢ Aand z ¢ B)
& (z € Cy(A) and z € Cy(B))
& (zely(A) NnCy(B)).

Therefore Cyy (AU B) = Cy(A4) NCy(B).
“ Ly (Cu(A)) = A7
(z €lu (Cu(A)) & (z ¢ (Cu(A))) & (z € Lu(A))

& (z ¢ A)
S e A
1.1.5 Set of parts.

Definition 1.1.11 Let E be a set, we form a set called the set of parts of E, denoted
P(E) which is characterized by the following relation P(E) ={A: A C E}

Example 1.1.12 Let E = {0,1,2}. Then
P(E) = {0,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}} .
Remark 1.1.13 If card (A) = n then card (P (A)) =2"..

Example 1.1.14 - If E = {a,b},then

P(E) = {@, {a}a {b}v {av b}}a

as card (E) =2, then card (P (E)) =22 =4
-If E = {a}, then P(A) ={0,{a}}.

1.1.6 Cartesian product

Definition 1.1.15 . Let A and B be sets. The Cartesian product of A and B, denoted
by A x B, is the set of all ordered pairs (a,b) in which a € A and b € B, i.e.
Ax B={(a,b): (a€ A)A(be B)}.
Thus
(pe Ax B) < {(Jae€ A)(F e B)[p = (a,b)]}.
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Example 1.1.16 (i) If A = {red, green} and B = {1,2,3} then
A x B ={(red,1),(red,2), (red,3), (green, 1), (green, 2), (green, 3)}.

(ii)) Z x Z = {(z,y)| © and y are integers}. This is the set of integer coordinates
points in the x,y—plane. The notation Z? is usually used for this set.

Example 1.1.17 If E = {1,2} and F = {3,5}, then

Ex F=1{(1,3),(1,5),(2,3),(2,5)}
Fx E={(3,1),(3,2),(51),(5,2)}
ExXF#Fx E

Example 1.1.18 1) R2 =R xR = {(2,7) : 2,y € R}
2)[0,1] xR={(z,y):0<z <1, yecR}

)

Notation 2 Let E2be the Cartesian square of E. More generally, we define the Cartesian
product of n sets E1, Es, ...,E, by

E1 X By x ... X Ep ={(x1,29,....,xp) s xi € E; , fori=1,...,n}.
Example 1.1.20 If E = {1,2}, then

E?=FExE=1{(1,1),(1,2),(2,1),(2,2)}
E*=FExExFE={(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,2,1),(2,1,2),(2,2,2)}



1. Sets, relations and applications Derbal louiza 9

Proposition 1.1.21 let E and F be two finite sets. Then
card (E x F) = card (E) x card (F)

The following theorem provides some basic properties of the Cartesian product.

theorem 1.1.22 LetA, B,C,D be sets. Then

a) Ax (BNC)=(AxB)Nn(AxC),

b) Ax (BUC)=(Ax B)U(AxOC),

c) (AxB)N(CxD)=(ANC)x (BND),

d) (Ax BYU(C x D) C (AuC) x (BUD),

e) If A or B are empty sets ((A=0 and B#0) or (B=10 and A# D) or (A=10
and B=10)), then A x B = (.

proof. (a) (=)
Let pe A x (BNC). Then

(Ja € A)(Fz € BN CO)[p = (a,x)]
In particular,
(Ja € A)(Fz € B)[p = (a,x)] and (Ja € A)(Fz € C)[p = (a,x)]

So pe (AxB)N(AxC).

(a) (<)
Let pe (Ax B)N (A x C). Then

pE(Ax B)andpe (AxC).

So
(Ja € A)(Fb € B)[p = (a,b)] and (Fa € A)(Fc € C)[p = (a,c)]

But then (a,b) = p = (a,c¢) and hence a = a and b = ¢. Thus p = (a,z) for some
acAandx € BNC,iepe€ Ax (BNC). This proves (a) . m
The proof of (b), (c), (d) and (e) are left as exercises.

1.2 Relations, Equivalence Relation

1.2.1 Relations

Definition 1.2.1 We call the relation R from E to F' any part of the Cartesian product
E x F. The domain of R is the set

DR)={z e FE:3yeF [(z,y) € R]}
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The range of R is the set
Ran(R) ={y € F : 3z € E[(x,y) € R]}.

If E = F, we say that R is a binary relation on F.
The inverse of R is the relation R~ from F to E defined as follows

R '={(y,z) e Fx E: (x,y) € R}.
The graph of this relation is:
Gr={(z,y) e EXF:z Ry}

Example 1.2.2 (i) Let A ={1,2,3}, B ={3,4,5}. The set R = {(1,3),(1,5),(3,3)}
is a relation from A to B since R T A X B.
(i) G = {(z,y) € ZXZ:x >y} is a relation from Z to Z.

Example 1.2.3 Let A ={1,2,3,4,5,6} a set and the relation R defined by

TRy & x divide y (in Z)

Gr = {(z,y) € Ax A, z dividey }
= {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,4),(2,6),(3,3),(3,6) , (4,4), (5,5) , (6,6)}

Definition 1.2.4 Let R be a binary relation over a set E. For all x,y,z € E, we say
that R is
(1) Reflexives, if each element is related to itself, i.e

Rz, Vxr € B

(2) Symmetric, if for all v,y € E, if x is related to y then y is related to x,
1.e.xRy = yRx,Vr,y € E.
(8) Transitive, if for all x,y,z € E, if x is in relation to y and y in relation to z
then x is in relation to z, i.e. (xRy and yRz) = xRz, Vx,y,z € E.
(4) Anti-symmetric, if two elements are related to each other, then they are equal,
1.€.
(zRy and yRx) = x = y,Vx,y € E.

A particularly important class of relations are equivalence relations.
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1.2.2 Equivalence Relation

Definition 1.2.5 A relation R on E is called equivalence relation if it is reflexive,

symmetric and transitive.

Example 1.2.6 (i) Let E be a set of students. A relation on E X E: “to be friends”.
It is reflexive (I presume that everyone is a friend to himself / herself). It is symmetric.

But it’s not transitive.
(i) Let E=Z,a € N. Define RCE x E as

R=A{(z,y): [x —y| <a}.

R is reflexive, symmetric, but not transitive.
(iii) Let E = Z, m € N. Define the congruence modm on E x E as follows:

=y if Gke€Z:x—y=km).
This is an equivalence relation on E.

Definition 1.2.7 Let R be an equivalence relation on E.
1. The equivalence class of an element x in E is the set of all elements y € E that

are in relation with © we denote this set by . & or T or C(x),and we write it as follow
t=z=Cx)={y € E:yRa}.

2. T is a representative of the equivalence class C(x).
3. The set of equivalence classes for all elements in E is called the ”quotient set” of

E for the equivalence relation R. It is denoted as E/R, and written as follows:
E/R ={C(z):z € E}.
Ezxample 1.2.8 In R we define the relation R by:
TRy =z —y el

This relation is indeed a relation of equivalence. Indeed,
e forreR:2Rx = 0€Z, as0 € Z, then xRx VNx € R, so R is a reflexive relation.
e For z,y € R, we have (zRy) < (r —y € Z) < (y—x € Z) = yRz, then R is a
symmetric relation.

e Forxz,y,z € R, we have
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(zRy and yRz) = (r—y€Z andy—z € Z)
= (r—y+y—2€2Z)

= (r—2€Z)= (zR=z2),
then R is a transitive relation.

Therefore, the set of equivalence classes C(x) is the set

Clz) = {yeR:y—xecZ}
= {yeR:yecz+7}
= {yeR:y=k+z:keZ}
= {k+z:keZ,

if © € Z, we have C(x) = Z.
Example 1.2.9 Let us consider the relation R defined on R by :

Vr,y € R, 2Ry & xe¥ = ye”

Prove that R is an equivalence relation.

Solution 1.2.10 show that R is reflexive, symmetric and transitive.
1.Vz € R on a xe® = xe®. In other words, we have xRz and then R is reflexive.

2. R is symetric . In fact, let x, y € R, such that xRy, hence we have

TRy = xze¥ = ye”,
= ye’ = xeY,

= YRz,

3. R is transitive because for all x, y, z € R, such that [(zRy) A (yR=z)],

on a :
TRy = xe¥ = ye¥ .o (1)
YRz = ye® = ze¥.ooonnnnn. (2)
. zeY , L. zeY
(2) gives y = ——, moreover, using (1) and by substituting y we have we¥ = —e®
e

hence xe¥e® = zeYe®. Since ¥ #£ 0 Thus xe* = ze®, which implies xR z.

4. R is reflexive, symetric and transitive then it is an equivalence relation.
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1.2.3 Order Relation

Definition 1.2.11 A binary relation R over E is said to be an order relation if it is

antisymmetric, transitive and reflexive

Example 1.2.12 On R the relation < is an order relation. In fact
- R reflexive
Vr e R,z Rz < x = .

- R antisymmetric, if only if:
V(z,y) ERxR;(sRy < x<y) and (YRex e y<z)Sz=y.
-R transitive, if only if :
V(z,y,2) ERXRXR; (aRyez<y) and (yRz e y<z) e r <z Rz

- In R, the relation < is not a relation of order ( is not reflexive.)

1.2.4 Total order and partial order

Definition 1.2.13 Let R be a relation of order defined on a set E, we say that R is
total, if for oll x,y € E, we have

TRy or yRux.
Otherwise, we say that R is partial, i.e.
Jx,y € E : neither xRy nor yRz
Example 1.2.14 A ={1,2,3,4,5,6} with
aRb < a divide b

is a partial order relation (is not total)
Indeed 2 and 3, for example, are not comparable : 2 does not divide 3 and 3 does not
divide 2.

Example 1.2.15 Let A be a non-empty set and R a relation on A defined by :

Va,b € A, aRb < a =b.

R is a an order relation on A.

If A is a singleton, then the order is total. If not, the order is partial.
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1.3 Applications

1.3.1 Denition of an application

Definition 1.3.1 Let E and F be given sets, we call the application of E in F, any
correspondence [ between the elements of E and those of F which associates to any

element of E one and only element of F', we write

f: FE—=F

z— [(x)

or f( application )= (Vx € E)3ly € F):y = f(x)
The set E is said to be the starting set and F' is said to be the end set.
The element x is said to be the antecedent and y is said to be the image of © by f.

The map f is said to be a function if, for each x € E, there exists at most y € F such
that f(x) =y.

Remark 1.3.2 (1) The application from E to F is that < every element x of E has
a unique image in F.

(2) If f is an application from E to F, then the element y of F' can have more than
one precedent in E.

(8) We must defferentiate between f (x) and f : we have f (x) € F, while f repres-
ents the application as a whole, and it belongs to the space of applications defened from
FE to F.

Exzample 1.3.3 We have A =1{1,2,3} and B ={7,9,13}.
o We have f(3) =9, f(2)=9; f(1)=T.

o f application from A to B every element x of A has a unique image in B.

B

o This element 13 has no precedent according to the application.

o This element 9 has two precedent : 2 and 3.
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Definition 1.3.4 (Graph). Let E and F be given sets. The graph of a map f : E — F
18

Gy :={(z,f(x)):2 € E} C Ex F.

Definition 1.3.5 (Equality). Let f,g : E — F be the applications. We say that f, g
are equal if and only if for allx € E : f(z) = g(x). We then write f = g.

Definition 1.3.6 (Composition). Let E, F and G be three sets and f and g two maps
such as
f g
F—F =G
We can deduce from this a map of E in G denoted go f and called a map composed of f

and g, by
(90 N)@) = g(f(a)), forall zcE.

Example 1.3.7 Let f : Z — Z, g: Z — Z,

flx)=2*+2, g(z) =2z — 1.

Find (f o g)(z) and (g0 f)(x).
Solution : we have

(fog)(z) = flg(z)) =g(2)* +2 =42® — 4z +3,
(gof)(z) = g(f(z)) =2f(z) -1 =22*+3.

As you clearly see from the above,f o g # go f in general.

Definition 1.3.8 Let E be a set, we call an identity map, denoted Idp : B — E is the
map that verifies Idg(x) = x, Vo € E.

Definition 1.3.9 Let f : E — F be a function. The domain of denition of f, denoted
Dy, is the set of elements x € E in which there exists a single element y € I, such that

y=[f(z).
Example 1.3.10 Let f : R — R denied by f(x) =z + 1, then

Di={zecR:2+1>0}=[-1,4o00[.
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1.3.2 Restricting and extending an application

Definition 1.3.11 Let AC F and f : E — F be an application. We call the restriction
from f to A, the map f/5: E — F denied by

fra(x) = f(x), for all x € A.

Definition 1.3.12 Let E C G and f: E — F a map. We call an extension from f to
G, any map g from G to F whose restriction to E is f.

Example 1.3.13 Given the applicationf:

f:RY —R
z —nz’
then
g:R* — R h:R* — R
¢ —lInjz| ¢ — In(|3z) —2z)

are two different extensions of f to R*.

1.3.3 Direct image and inverse image

Definition 1.3.14 Let A, B be non-empty sets. Let E be a subset of A, and f: A — B
be application. The direct image of the set E is defined by :

F(E)={f(z):z€E}

Example 1.3.15 Let f : Z — 7 defined by f(x) = x2. Let
A={ze€Z:0<z<2}
Then f(A) =1{0,1,4}.

Definition 1.3.16 Let A , B be non-empty sets, let I’ be a subset of B, and f : A — B
be application. The inverse image of the set F' is defined by :

fHF)={zeA: f(x)eF}
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f-YHF)

Example 1.3.17 Let f: Z — Z defined by f(x) = 22, let B={y € Z :y < 10}. Then
fﬁl(B) = {_37 _2a _1707 172a3}

theorem 1.3.18 Let f: X - Y and A1 C X, Ao C X, B1CY, By CY. Then
(i) ) A1 C Ay = f(A1) C f(As) and By C Ba = f~1(By) C f~Y(Ba).
(i) f (A1 N Az) C f(A1) N f(A2) and =1 (BiN Bg) = f~1(B1) N f~1(Ba).
(i1i) f(A1UAz) = f(A1) U f(A2) and f~1 (B1UB2) = f~H(B1) U f~1(Ba).
(iiii) Ay C F1(F(A) and f (F1(BY) C By.

1.3.4 Injective, surjective and bijective application
Definition 1.3.19 Let f: E — F. f is said to be injective if and only if :
Y (z1,20) € E? : f(z1) = f(x2) = 21 = 29

Example 1.3.20
f:RY/{2} —R

1
x —_—
22 —4
18 an injective application because we have :
+ 2 1 1 2 _ 2
V(z1,m2) € (RY/{2})": fla1) = flz2) & — = & x] =15 & 11 = fag,

x]—4 ZE§—4
but as x1, x2 € R/ {2} then x1 = xo.

Definition 1.3.21 Let f : E — F. We say that f is surjective if and only if: for all
y € F, there exists x € E such that f(z) =y, i.e.

Vye F,3dz € E: y= f(z).

Example 1.3.22 Let f : Z — N.be the map defined by f(x) = |x|, then f is surjective.
Indeed, let y € N, for x =y or x = —y, we have © € Z and f(x) = |x| = y, so there
exists x € Z such that y = f(z).
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Definition 1.3.23 Let f : E — F. f is said to be bijective if and only if: f is both
ijective and surjective. This is equivalent to : for all y € F there exists a unique x € E
such that y = f(x). In other words:

Vye F,3z e E:y= f(x).

Example 1.3.24 Let f : R — R, defined by f(x) = x + 1, then f is bijective. Indeed,
let y € R, such that f(x) =y, then © =y — 1, so there exists a unique x in R such that

y = f(x).

Remark 1.3.25 If the application f is bijective, then to every y € F we match a single

element z € E.

Definition 1.3.26 Let f : E — F be a bijective function. We define the function
[ 1 F — E, called the reciprocal function of f, given by f~1(x) = y if and only if

fly) ==z

Example 1.3.27 Let f be the map defined by f(x) = 22 + 1 of Rt — [1,4+o0|, then f
is bijective, because for all y € [1,00][, the equation y = f(x) admits a single solution
x = \/y — 1. The reciprocal bijection is f~' : [1, +oo[— R+ defined by:

fYx)=vVz =1 for all x € [1,40c0].

Proposition 1.3.28 Let E, F be sets and f : E — F an application.
e The map f is bijective if and only if there is a map g : F' — E such that

fog:IdF andgof:IdE

o Let f: E— F and g: F — G be bijective maps. The map go f is bijective and its

reciprocal bijection is
(gof) ' =f"log™",
1.4 Some methods of proof

1. First we discuss a couple of widely used methods of proof: contrapositive proof

and proof

by contradiction.

The idea of contrapositive proof is the following equivalence
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(A= B) & (B=A).

So to prove thatA = B is true is the same as to prove that B = A is true.
Example 1.4.1 For integers m and n, if mn is odd then so are m and n.
proof. We have to prove that
(Vm,n € Zy)(mn is odd) = [(m is odd) A (n is odd)],
which is the same as to prove that
[(m is even) V (n is even)] = (mn is even)

The latter is evident. m

The idea of proof by contradiction is the following equivalence

(A= B)& (AVB)& (AAB)

So to prove that A = B is true is the same as to prove that AV B is true or elsethat
A A B is false.

2 The Principle of Mathematical Induction is often used when one needs to prove

statements of the form
(Vn € N) P(n).

Thus one can show that 1 has property P and that whenever one adds 1 to a
number that has property P, the resulting number also has property P.
Principle of Mathematical Induction. If for a statement P(n)

(i) P(1)is true,

(i) [P(n) = P(n+1)] is true,

then (Vn € N) P(n) is true.

Part (i) is called the base case; (ii) is called the induction step.

Example 1.4.2 Prove that

1)(2 1
VneN:12+22+32+...+n2:n(n+ )6( n+ )'
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1-2-3 .
18 true.

Solution: Base case: n=1. 12 =
Induction step: Suppose that the statement is true for n = k(k > 1). We have to

prove thatit is true for n = k+ 1. So our assumption is

1)(2 1
12+22+32+---+k2:k(k+ )6( k+ )

Therefore we havel

2 (k+1)(k+2)(2k +3)

P4+22+ 34+ B+ (k+1) o :

which proves the sta tement for n = k + 1. By the principle of mathematical induction

thestatement is true for all n € N.



