

Sétif 1 University-Ferhat ABBAS **Faculty of Sciences Department of Mathematics**

Introduction to Metric and Topological Spaces

Mathematics Bachelor's Degree - LMD - 3rd Semester

Series 1 (Usual topology on \mathbb{R})

Exercise 1: We consider in \mathbb{R} the following family:

 $\mathcal{T} = \{ A \subseteq \mathbb{R} \mid (A = \emptyset) \text{ or } (\forall x \in A, \exists I_x \text{ such that } x \in I_x \subseteq A) \}$ where I_x is an open interval in \mathbb{R} .

- 1) Let $A \in \mathcal{T}$ and $A \neq \emptyset$, show that $A = \bigcup_{i} I_x$.
- 2) Show that \mathcal{T} is a topology on \mathbb{R} (the usual topology on \mathbb{R}).
- 3) Show that $[a, b], [a, +\infty[$ and $]-\infty, b[$ are open sets.
- 4) Show that [a, b], $[a, +\infty[$ and $]-\infty, b]$ are closed sets.
- 5) Show that [a, b] and [a, b] are neither closed nor open sets.
- **6)** Show that $(\mathbb{R}, |.|)$ is a Hausdorff space (separated).

Exercise 2: Show that any finite union of closed sets in \mathbb{R} is an closed set in \mathbb{R} .

Exercise 3: Show that any intersection of closed sets in \mathbb{R} is a closed set in \mathbb{R} .

Exercise 4: Find the accumulation points and the isolated points of each of the following sets of real numbers:

$$1)A_1 = \mathbb{N},$$

$$3)A_3 = \mathbb{C}_{\mathbb{R}}Q,$$

$$(2)A_2 =]a, b],$$

$$\mathbf{3})A_3=\mathsf{L}_{\mathbb{R}}Q,$$

2)
$$A_2 =]a, b],$$

4) $A_4 =]-\infty, -1[\cup]-1, 3[\cup \{5\},$

5)
$$A_5 = \left\{ (-1)^n + \frac{1}{2^n} : n \in \mathbb{N} \right\}.$$

Exercise 5: Find sets A such that:

1)
$$A$$
 and A' are disjoint,

2)
$$A$$
 is a proper subset of A' ,

3)
$$A'$$
 is a proper subset of A , 4) $A = A'$.

Exercise 6: Let (x_n) be a Cauchy sequence. If a subsequence (x_{n_k}) of (x_n) converges to a point ℓ , then the Cauchy sequence itself converges to ℓ .

Exercise 7: Let A be a subset of \mathbb{R} . A point $x_0 \in \mathbb{R}$ is an accumulation point of A if and only if every neighborhood of x_0 contains an infinite number of points from A.

Exercise 8: A subset A of $(\mathbb{R}, |.|)$ is closed if and only if it contains all its accumulation points.

