# وزارة التعليم العالى والبحث العلمي



### Sétif 1 University-Ferhat ABBAS Faculty of Sciences Department of Mathematics



# Introduction to Metric and Topological Spaces

Mathematics Bachelor's Degree - LMD - 3<sup>rd</sup> Semester

Solution of series 1 (Usual topology on  $\mathbb{R}$ )

Exercise 1: We consider in  $\mathbb{R}$  the following family:

$$\mathcal{T} = \{ A \subseteq \mathbb{R} \mid (A = \emptyset) \text{ or } (\forall x \in A, \exists I_x \text{ such that } x \in I_x \subseteq A) \},$$

where  $I_x$  is an open interval in  $\mathbb{R}$ .

1) Let  $A \in \mathcal{T}$  and  $A \neq \emptyset$ . On the one hand, for all  $x \in A$ , there exists  $I_x \subseteq A$  such that  $x \in I_x \subseteq A$ , from which we obtain

$$\bigcup_{x \in A} I_x \subseteq A. \tag{1}$$

On the other hand, we have

$$A = \bigcup_{x \in A} \{x\} \subseteq \bigcup_{x \in A} I_x. \tag{2}$$

From (1) and (2), we conclude that  $A = \bigcup I_x$ .

- 2) From the previous question we deduce that for each  $x \in A$  there is r > 0 such that  $x \in B(x,r) = ]x r, x + r[\subseteq I_x \subseteq A$ . Then, it follows from Definition(1.18) that  $\mathcal{T}$  is a topology on  $\mathbb{R}$ .
- **3)** The interval ]a, b[ is open in  $(\mathbb{R}, |.|)$  because for each  $x \in ]a, b[$  there exists r > 0 such that  $B(x, r) = ]x r, x + r[\subseteq]a, b[$  (By Definition(1.4)).
  - The interval  $]a, +\infty[$  is open in  $(\mathbb{R}, |.|)$  because for each  $x \in ]a, +\infty[$  there exists r > 0 such that  $B(x, r) = ]x r, x + r[\subseteq]a, +\infty[$  (By Definition(1.4)).
  - The interval  $]-\infty, b[$  is open in  $(\mathbb{R}, |.|)$  because for each  $x \in ]-\infty, b[[$  there exists r > 0 such that  $B(x, r) = ]x r, x + r[ \subseteq ]-\infty, b[$  (By Definition(1.4)).

- **4)** The interval [a, b] is closed in  $(\mathbb{R}, |.|)$  because  $C_{\mathbb{R}}[a, b] = ]-\infty, a[\bigcup]b, +\infty[$  is an open set in  $(\mathbb{R}, |.|)$ .
  - The interval  $[a, +\infty[$  is closed in  $(\mathbb{R}, |.|)$  because  $C_{\mathbb{R}}[a, +\infty] = ]-\infty, a[$  is an open set in  $(\mathbb{R}, |.|)$ .
  - The interval  $]-\infty, b]$  is closed in  $(\mathbb{R}, |.|)$  because  $C_{\mathbb{R}}[-\infty, b] = ]b, +\infty[$  is an open set in  $(\mathbb{R}, |.|)$ .
- 5) The interval ]a,b] is not open because there does not exist an  $I_b \subset \mathbb{R}$  such that  $b \in I_b \subseteq ]a,b]$ , and it is not closed because the complement  $C_{\mathbb{R}}[a,b] = ]-\infty,a] \cup ]b,+\infty[$  is not open.
  - Using similar arguments to those in (4), we can show that [a, b[ is neither open nor closed.
- **6)** We want to show that  $(\mathbb{R}, |.|)$  is a Hausdorff space (separated). Let  $x, y \in \mathbb{R}$  such that  $x \neq y$ . We set |x - y| = r. If we take  $N_1 = \left]x - \frac{r}{3}, x + \frac{r}{3}\right[$  as a neighbourhood of x and  $N_2 = \left]y - \frac{r}{3}, y + \frac{r}{3}\right[$  as a neighbourhood of y, we obtain  $N_1 \cap N_2 = \emptyset$ . Hence,  $(\mathbb{R}, |.|)$  is a Hausdorff space (separated).

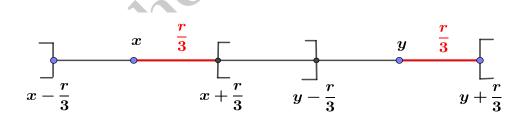


Figure 1:  $\mathbb{R}$  is a Hausdorff space

Exercise 2: Let  $F_1, F_2, \ldots, F_n$  be closed sets in  $\mathbb{R}$  and let  $F = F_1 \cup F_2 \cup \cdots \cup F_n$ . Then, according to De Morgan's law, we obtain  $F^C = (F_1 \cup F_2 \cup \cdots \cup F_n)^C = F_1^C \cap F_2^C \cap \cdots \cap F_n^C$ . Thus,  $F^C$  is open because it is the finite intersection of open sets, which implies that F is a closed set in  $\mathbb{R}$ .

Exercise 3: Let  $\{F_i, i \in I\}$  be a family of closed sets in  $\mathbb{R}$  and let  $F = \bigcap_{i \in I} F_i$ . Then,

according to De Morgan's law, we obtain  $F^C = \left(\bigcap_{i \in I} F_i\right)^C = \bigcup_{i \in I} F_i^C$ . Thus,  $F^C$  is open because it is an any union of open sets, which implies that F is a closed set in  $\mathbb{R}$ .

### Exercise 4:

$$\mathbf{1})A_1' = \emptyset, \quad Is(A_1) = \mathbb{N}$$

**1)**
$$A'_1 = \emptyset$$
,  $Is(A_1) = \mathbb{N}$  **2)** $A'_2 = [a, b]$ ,  $Is(A_2) = \emptyset$ .

$$(3)A_3' = \mathbb{R}, Is(A_3) = \emptyset$$

**3)**
$$A'_3 = \mathbb{R}, \quad Is(A_3) = \emptyset$$
 **4)** $A'_4 = ]-\infty, 3], \quad Is(A_5) = \{5\}$ 

**5)**
$$A_5' = \{-1, 1\}, Is(A_5) = A_5.$$

### Exercise 5:

- 1. The set  $A = \left\{ \frac{1}{n} : n \geqslant 1 \right\}$  has 0 as its only accumulation point. Hence  $A \cap A' = \emptyset$ .
- 2. Let A = [a, b] with  $a, b \in \mathbb{R}$ . As we saw in the previous exercise, A' = [a, b]. Thus,  $A \subset A'$ .
- 3. Let  $A = \left\{ \frac{1}{n} : n \geqslant 1 \right\} \cup \{0\}$ . Then,  $A' = \{0\}$ . Therefore,  $A' \subset A$ .
- 4. Let  $A = [a, b] \subset \mathbb{R}$ . Then, A' = [a, b] which implies that A' = A.

**Exercise 6:** Let  $\varepsilon > 0$ . We need to find a positive integer N such that

$$n > N \implies |x_n - \ell| < \varepsilon.$$

Since  $(x_n)$  is a Cauchy sequence, there exists  $n_0 \in \mathbb{N}$  such that

$$\forall n, m \in \mathbb{N}, \quad n, m > n_0 \implies |x_n - x_m| < \frac{\varepsilon}{2}.$$

Moreover,  $(x_{n_k})$  is a subsequence that converges to  $\ell$ , hence there exists  $n_1 \in \mathbb{N}$  such that

$$n_k > n_1 \implies |x_{n_k} - \ell| < \frac{\varepsilon}{2}.$$

If we take  $N = \max(n_0, n_1)$  and  $n_k, n > N$ , we obtain

$$|x_n - \ell| \leqslant |x_n - x_{n_k} + x_{n_k} - \ell| \leqslant |x_n - x_{n_k}| + |x_{n_k} - \ell| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

which means that  $\lim_{n \to \infty} x_n = \ell$ .

#### Exercise 7:

 $\implies$ ) Suppose that N = ]a, b[ is a neighbourhood of  $x_0$  and  $N \cap A = \{x_1, x_2, \dots, x_n\}$ . By taking  $a' = \max(x_i)$  and  $b' = \min(x_i)$  such that  $a < a' < x_0 < b' < b$ , we obtain  $[a',b'] \cap (A \setminus \{x_0\}) = \emptyset$ . Therefore,  $x_0$  is not an accumulation point of A (Proof by contrapositive).

← ) I leave it as an exercise (Obvious).

# Exercise 8:

- $\Longrightarrow$ ) Let A be a closed subset in  $(\mathbb{R}, |.|)$ . If  $x \in \mathbb{C}_{\mathbb{R}}A$ , then  $\mathbb{C}_{\mathbb{R}}A$  is a neighbourhood of x (see Remark (1.5)). But  $\mathbb{C}_{\mathbb{R}}A \cap A = \emptyset$ , which tells us that  $x \notin A'$  (Proof by contrapositive).
- $\iff$  ) Suppose that A is a subset of  $\mathbb R$  that contains all its accumulation points. Therefore, no point of  $\mathbb C_{\mathbb R}A$  is an accumulation point of A. Consequently, for every point of  $\mathbb C_{\mathbb R}A$ , there exists a neighborhood N such that  $N\cap A=\emptyset$ . Thus,  $N\subset \mathbb C_{\mathbb R}A$ , which shows that  $\mathbb C_{\mathbb R}A$  is a neighbourhood of each of its points. Therefore,  $\mathbb C_{\mathbb R}A$  is open, which implies that A is closed.