

Sétif 1 University-Ferhat ABBAS Faculty of Sciences Department of Mathematics

Introduction to Metric and Topological Spaces

Mathematics Bachelor's Degree - LMD - 3rd Semester

Series 2: Metric spaces

Exercise 1:

1. Show that the following functions define distances on \mathbb{R}^n .

$$d_1(x,y) = \sum_{i=1}^{n} |x_i - y_i|, \quad d_{\infty}(x,y) = \sup_{i=1,\dots,n} (|x_i - y_i|),$$

and draw the open unit balls B((0,0),1) in \mathbb{R}^2 for d_1 and d_{∞} .

2. Show that the following functions are distances on C[a, b].

$$d_1(f,g) = \int_a^b |f(t) - g(t)| dt, d_{\infty}(f,g) = \sup_{t \in [a,b]} (|f(t) - g(t)|)$$

Exercise 2: Let (\mathbb{X}, d) be a metric space and f a real increasing function defined on \mathbb{R}_+ and satisfying:

$$\begin{cases} f(0) = 0 \\ f(x+y) \leqslant f(x) + f(y), \ \forall x, y \in \mathbb{R}_+. \end{cases}$$

- 1. Show that the function $d_1 = f \circ d$ is a distance on \mathbb{X} .
- 2. Deduce that the following functions are distances on \mathbb{X} .

$$d_2 = \frac{d}{1+d}$$
, $d_3 = inf(1,d)$, $d_4 = ln(1+d)$.

Exercise 3: Let X be an arbitrary set. Show that:

1.
$$\delta(x,y) = \begin{cases} 1 \text{ if } x \neq y \\ 0 \text{ if } x = y \end{cases}$$
 is a distance on \mathbb{X} .

2.
$$B(x_0, r) = \begin{cases} \{x_0\} & \text{if } r \leq 1\\ \mathbb{X} & \text{if } r > 1 \end{cases}$$

Exercise 4: Let (X, d) be a metric space and A a subset of X. Show that the following propositions are equivalent:

- 1. x is an accumulation point of A.
- 2. Every neighborhood N of x contains an infinite number of points of A.
- 3. $x \in Cl(A \{x\})$.

Exercise 5: Show that a finite intersection of dense open sets of X is a dense open set in X.

Exercise 6: Let (\mathbb{X}, d) be a metric space and A a subset of \mathbb{X} . Show that $Cl(A) = \{x \in \mathbb{X} : d(x, A) = 0\}$.

Exercice 7: Let A and B be two bounded subsets of a metric space (\mathbb{X}, d) .

- 1. Show that diam(A) = diam(Cl(A)).
- 2. Show that $diam(A \cup B) \leq diam(A) + diam(B) + d(A, B)$.

Exercise 8: Let d_1 and d_2 be two distances defined on a set \mathbb{X} , such that for every open ball B_{d_1} centered at $x \in \mathbb{X}$, there exists an open ball B_{d_2} also centered at x, such that $B_{d_2} \subset B_{d_1}$. Show that the topology \mathcal{T}_{d_1} induced by d_1 is coarser than the topology \mathcal{T}_{d_2} induced by d_2 , i.e., $\mathcal{T}_{d_1} \subset \mathcal{T}_{d_2}$.

Exercise 9: Let d_1 and d_{∞} be the two distances defined on C[a,b] (see Exercise 1(2)). Show that the topology \mathcal{T}_{d_1} induced by d_1 is coarser than the topology $\mathcal{T}_{d_{\infty}}$ induced by d_{∞} , i.e., $\mathcal{T}_{d_1} \subset \mathcal{T}_{d_{\infty}}$.