Ferhat Abbas University-Sétif 1 Faculty of Sciences Department of Chemistry

Exercises with Solutions

Exercise 1. Consider the following Cauchy problem :

$$\begin{cases} y'(t) = 2t - y(t) | t \in [0, 1] \\ y(0) = 1. \end{cases}$$
(P)

a- Show that the problem (P) admits a unique solution.

b- Verify that the problem (P) admits the equation (1) as a particular solution.

$$y(t) = 2t - 2 + 3e^{-t}.$$
 (1)

c- Provide the iterative scheme of the fourth-order Runge–Kutta algorithm to solve the problem (P).

d- Apply the fourth-order Runge–Kutta algorithm to this problem with h = 0.1 to evaluate the solution at t = 0.3. Compare the obtained solution with the exact solution.

Solution .

c-

a- We have $\frac{\delta f}{\delta y} = 1$, which is a continuous and bounded function, so this problem admits a unique solution. b- We have, according to (1),

$$y'(t) = 2 - 3e^{-t}$$

= 2 - 3e^{-t} - 2t + 2t
= -y(t) + 2t.

On the other hand, we have y(0) = -2 + 3 = 1, from which we deduce that the equation (1) is a particular solution.

$$(RK_4) \begin{cases} y_0 = y(t_0), t_0 = a \text{ et } h = \frac{b-a}{n} \\ y_{i+1} = y_i + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4), i = 1, \dots, n-1 \\ K_1 = f(t_i, y_i) \\ K_2 = f(t_i + \frac{h}{2}, y_i + \frac{h}{2}K_1) \\ K_3 = f(t_i + \frac{h}{2}, y_i + \frac{h}{2}K_2) \\ K_4 = f(t_i + h, y_i + hK_3) \end{cases}$$

d- Apply the fourth-order Runge-Kutta method algorithm RK_4 with h = 0.1:

$$(RK_4) \begin{cases} y_0 = y(0) = 1, h = 0.1\\ y_1 = y_0 + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4), i = 1, \dots, n-1\\ K_1 = f(t_0, y_0) = f(0, 1) - 1\\ K_2 = f(t_0 + \frac{h}{2}, y_0 + \frac{h}{2}K_1) = f(0.05, 1.05) = -0.95\\ K_3 = f(t_0 + \frac{h}{2}, y_0 + \frac{h}{2}K_2) = f(0.05, 0.955) = -0.852\\ K_4 = f(t_0 + h, y_0 + hK_3) = f(0.05, 0.914) = -0.814\\ y_1 = 1 + \frac{0.1}{6}(K_1 + 2K_2 + 2K_3 + K_4) = 0.943 \end{cases}$$

hence $y(0.1) \simeq y_1 = 0.943$.

$$(RK_4) \begin{cases} y_2 = y_1 + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4), i = 1, \dots, n-1 \\ K_1 = f(t_1, y_1) = f(0.1, 0.9430) = -0.743 \\ K_2 = f(t_1 + \frac{h}{2}, y_1 + \frac{h}{2}K_1) = f(0.15, 0.905) = -0.605 \\ K_3 = f(t_1 + \frac{h}{2}, y_1 + \frac{h}{2}K_2) = f(0.15, 0.9127) = -0.6127 \\ K_4 = f(t_1 + h, y_1 + hK_3) = f(0.2, 0.8818) = -0.4818 \\ y_1 = 0.943 + \frac{0.1}{6}(K_1 + 2K_2 + 2K_3 + K_4) = 0.882 \end{cases}$$

then $y(0.2) \simeq y_2 = 0.882$.

By repeating the same process, we obtain : $y(0.3) \simeq y_3 = 0.8436$ Comparison : We have the value of $y(0.3) = 2 \times 0.3 - 2 + 3e^{-0.3} = 0.8225$, then

 $e_i = |0.8225 - 0.8436| = 0.0216$

Exercise 2.

a- Provide the iterative scheme of the Euler algorithm to solve the problem (P) from exercise 1.

b- Apply the Euler algorithm to this problem with h = 0.1 to evaluate the solution at t = 0.3. Compare the obtained solution with the exact solution.

Solution .

a-

$$\begin{cases} y_0 = y(t_0), t_0 = a \\ y_{i+1} = y_i + hf(t_i, y_i), i = 1, \dots, n-1 \end{cases}$$

with $h = \frac{b-a}{n}$, et $t_{i+1} = t_i + h$. b-

$$y(0.1) \simeq y_1 = y_0 + 0.1(2t_0 - y(t_0)) = 1 + 0.1(2 \times 0 - y(0)) = 0.92.$$

$$y(0.2) \simeq y_2 = y_1 + 0.1(2t_1 - y(t_1)) = 0.868$$

$$y(0.3) \simeq y_3 = y_2 + 0.1(2t_2 - y(t_2)) = 0.8412$$

Then $y(0.3) \simeq y_3 = 0.8412$.

Comparison : The exact value at t = 0.3 is y(0.3) = 0.8225, so the error made when applying the Euler algorithm is

$$e_i = |0.8225 - 0.8412| = 0.019.$$

The theoretical error is given by

$$e_t \le (e^{L(b-a)} - 1)\frac{M_2}{2L}h,$$

where $M_2 = \max_{t \in [0,1]} |y''(t)|$ and L is the Lipschitz constant of f with respect to y, which is equal to 1. In addition, we have

$$y''(t) = 3e^{-t}$$

Then $M_2 = \max_{t \in [0,1]} |3e^{-t}| = 3$. Hence,

$$e_t \le (e^{L(b-a)} - 1) \frac{M_2}{2L} h$$

$$\le (e^{1(0.3-0)} - 1) \frac{3 \times 0.1}{2 \times 1}$$

$$\le 0.05247$$

It is clear that $e_i \leq e_t$, so the Euler method provides a good approximation of the solution to this Cauchy problem at t = 1.

Exercice 3. Consider the following differential equation :

$$\begin{cases} y'(t) &= y(t) + t \middle| t \in [0, 1] \\ y(0) &= 1. \end{cases}$$

The exact solution of this equation is $y(t) = -1 - t + 2e^t$.

- Numerically approximate the solution of this equation at t = 1 using the Euler method by subdividing the interval into 10 equal parts.

- Compare the obtained solution with the exact solution.

Solution .

Let f(t, y) = y(t) + t, the points t_i to evaluate for h = 0.1 are $t_1 = 0.1, t_2 = 0.2, t_3 = 0.3, \ldots, t_{10} = 1$. By following the same procedure as in the previous examples, we obtain :

$$y(0.1) \simeq y_1 = y_0 + 0.1 \times f(t_0, y_0) = 1.1$$

$$y(0.2) \simeq y_2 = y_1 + 0.1 \times f(t_1, y_1) = 1.22$$

$$y(0.3) \simeq y_3 = y_2 + 0.1 \times f(t_2, y_2) = 1.362$$

$$\vdots$$

$$y(1) \simeq y_{10} = y_9 + 0.1 \times f(t_9, y_9) = 3.1874$$

That is, the approximation at t = 1 of y(t) is $y_{10} = 3.1874$.

- Comparison of results :

The exact value at t = 1 is $y(1) = -1 - 1 + 2e^1 = 3.4366$. Thus, the error actually made when applying the Euler method is

$$e_i = |3.4366 - 3.1874| = 0.25$$

Now, let's find the theoretical error, which is given by

$$e_t \le (e^{L(b-a)} - 1)\frac{M_2}{2L}h$$

where $M_2 = \max_{t \in [0,1]} |y''(t)|$ and L is the Lipschitz constant of f with respect to y. We have,

$$|f(t, y_1) - f(t, y_2)| = |y_1 - y_2| \Rightarrow L = 1.$$

Furthermore, we have,

$$y''(t) = y'(y) + 1 = y(t) + t + 1$$

= 1 + t + (-1 - t + 2e^t)
= 2e^t

 $M_2 = \max_{t \in [0,1]} |2e^t| = 2e$. Hence

$$e_t \le (e^{L(b-a)} - 1) \frac{M_2}{2L} h$$

$$\le (e^{1(1-0)} - 1) \frac{2e \times 0.1}{2 \times 1}$$

$$< 0.4673.$$

It is clear that $e_i \leq e_t$, so the Euler method provides a good approximation of the solution to this Cauchy problem at t = 1.

Exercise 4. Solve the following Cauchy problem using the fourth-order Runge-Kutta method with a step size of h = 0.1.

$$\begin{cases} y'(t) = y(t) - t + 2, t \in [0, 1] \\ y(0) = 2. \end{cases}$$

Solution .

Apply the fourth-order Runge-Kutta method algorithm RK_4 with h = 0.1.

$$(RK_4) \begin{cases} y_0 = y(0) = 2, h = 0.1\\ y_1 = y_0 + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4), i = 1, \dots, n-1\\ K_1 = f(t_0, y_0) = 0.4\\ K_2 = f(t_0 + \frac{h}{2}, y_0 + \frac{h}{2}K_1) = 0.4150\\ K_3 = f(t_0 + \frac{h}{2}, y_0 + \frac{h}{2}K_2) = 0.4157\\ K_4 = f(t_0 + h, y_i + hK_3) = 0.4365\\ y_1 = 1 + \frac{0.25}{6}(K_1 + 2K_2 + 2K_3 + K_4) = 2.4163 \end{cases}$$

By repeating the same process for the other iterations, we obtain the results in the following table :

i	0	1	2	3	4	5	6	7	8	9	10
t_i	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
y_i	2	2.4163	2.8659	3.5323	3.8793	4.4513	5.0728	5.7492	6.4863	7.2903	8.1684

Exercice 5. Let the following differential equation :

$$\begin{cases} y'(t) &= t - \ln y \\ y(2) &= 3.4 \end{cases}$$

- Calculate y(2.8) using the fourth-order Runge-Kutta method with h = 0.8 and then with h = 0.4. Abbreviated solution : .

- y(2.8) with h = 0.8 is $y(2.8) \simeq y_1 = 4.255952$.

- y(2.8) with h = 0.4 is $y(2.8) \simeq y_2 = 4.255888$.

Exercise 6. Let the following differential equation :

$$y'(t) = \frac{y^2}{t}$$
$$y(1) = 1$$

- Calculate y(1.5) using the fourth-order Runge-Kutta method with a step size of h = 0.5.

- Recalculate y(1.5) with h = 0.25.

Abbreviated solution : .

- y(1.5) with h = 0.5 is $y(1.5) \simeq y_1 = 1.67985$

- y(1.5) with h = 0.25 is $y(1.5) \simeq y_2 = 1.68178$

Exercise 7. Let the following Cauchy problem :

$$y'(t) = -y + t + 1 | t \in [0, 1]$$

 $y(0) = 1.$

a- Calculate the approximation of y(0.2) using the Euler method, with a step size of h = 0.1.

b- Calculate the approximation of y(0.2) using the improved Euler method, with a step size of h = 0.1.

c- For each method, calculate the error made by comparing the result obtained with the exact solution $y^*(0.2) = 1.018731$.

Abbreviated solution : .

a- $y(0.2) \simeq y_2 = 1.01$ and $|y_2 - y(0.2)| = 0,008731$.

b- $y(0.2) \simeq y_2 = 1.019025$ and $|y_2 - y(0.2)| = 0,000294$.