

وزارة التعليم العالي والبحث العلمي

Sétif 1 University-Ferhat ABBAS Faculty of Sciences Department of Mathematics

INTRODUCTION TO METRIC & TOPOLOGICAL SPACES

FOR THE SECOND YEAR LMD MATHEMATICS STUDENTS

Prepared by:

Dr. CHOUGUI Nadhir

2024/2025

CONTENTS

In	ntroduction	ii
2	Complete metric spaces 2.1 Convergence in a metric space	1 1 1 5 9
Bi	ibliography	12

CHAPTER 2

COMPLETE METRIC SPACES

You are familiar with the notion of a convergent sequence of real numbers. It is defined as follows: the sequence $(x_n)_{n\in\mathbb{N}}$ of real numbers is said to converge to the real number x if given any $\varepsilon > 0$ there exists n_0 such that for all $n \ge n_0$, $|x_n - x| < \varepsilon$.

It is obvious how this definition can be extended from \mathbb{R} with the Euclidean metric to any metric space.

2.1 Convergence in a metric space

2.1.1 Convergence and limits

\$

Definition 2.1. A sequence $(x_n)_{n\in\mathbb{N}}$ in a metric space (\mathbb{X},d) is called convergent to $x_0\in\mathbb{X}$ if,

$$(2.1) \forall \varepsilon > 0, \ \exists N_0(\varepsilon) \in \mathbb{N} \ / \ \forall n \in \mathbb{N}, \ n \geqslant N_0 \Longrightarrow d(x_n, x_0) < \varepsilon.$$

The point x is called the limit of the sequence $(x_n)_{n\in\mathbb{N}}$, and we write

$$\lim_{n \to +\infty} (x_n) = x_0 \text{ or } x_n \to x_0.$$

If the sequence does not converge, then it is said to diverge.

Remark 2.1. The condition (2.1) means that from a certain rank N_0 the elements of the sequence (x_n) are in the open ball $B(x_0,\varepsilon)$. Thus, this ball contains an infinite elements of this sequence.

Example 2.1. In the metric space $(\mathbb{R}, |.|)$, the sequence $\left(\frac{1}{n}\right)_{n \in \mathbb{N}^*}$ converge to 0 and we write $\lim_{n \longrightarrow +\infty} \left(\frac{1}{n}\right) = 0$.

Proof Let $\varepsilon > 0$ be given. By the Archimedean property, there is an integer $N_0 \in \mathbb{N}$ such that $N_0 > \frac{1}{\varepsilon}$, and thus for all $n \ge N_0$, we have $d_u\left(\frac{1}{n}, 0\right) = \left|\frac{1}{n}\right| < \varepsilon$.

However, this sequence can be made to diverge by changing the metric on \mathbb{R} .

Example 2.2. In the metric space (\mathbb{R}, d_{disc}) , the sequence $\left(\frac{1}{n}\right)_{n \in \mathbb{N}^*}$ diverges.

Proof Using the definition of the discrete distance (??) we obtain $\delta\left(\frac{1}{n},0\right) = 1$ because $\frac{1}{n} \neq 0$. Hence, if we take $\varepsilon < 1$, we obtain $\delta\left(\frac{1}{n},0\right) > \varepsilon$.

Proposition 2.1. Let (\mathbb{X},d) be a metric space. The sequence $(x_n)_{n\in\mathbb{N}}$ converges to $x_0\in\mathbb{X}$ if and only if the sequence $(d(x_n,x_0))$ converges to 0 in (\mathbb{R},d_u) .

Proof Suppose first that $x_n oup x_0$ in (\mathbb{X},d) . Then for any $\varepsilon > 0$, there is an $N_0 \in \mathbb{N}$ such that $d(x_n,x_0) = |d(x_n,x_0)| < \varepsilon$ for all $n \ge N_0$, but this precisely the same as $d(x_n,x_0) \to 0$ in (\mathbb{R},d_u) . Conversely, if $d(x_n,x_0) \to 0$ in (\mathbb{R},d_u) , then for every $\varepsilon > 0$ there is an $N_0 \in \mathbb{N}$ such that $d(x_n,x_0) = |d(x_n,x_0)| < \varepsilon$ for all $n \ge N_0$, and this precisely what it means to have $x_n \to x_0$ in (\mathbb{X},d) .

Example 2.3. The sequence $(x_n)_{n\in\mathbb{N}^*}$ defined by $x_n = \left(\frac{1}{n}, \frac{1}{n}\right)$ converges to (0,0) in the three metric spaces (\mathbb{R}^2, d_1) , (\mathbb{R}^2, d_2) and $(\mathbb{R}^2, d_{\infty})$.

Proof . We have

$$d_1\left(\left(\frac{1}{n}, \frac{1}{n}\right), (0, 0)\right) = \frac{2}{n},$$

$$d_2\left(\left(\frac{1}{n}, \frac{1}{n}\right), (0, 0)\right) = \frac{\sqrt{2}}{n},$$

$$d_\infty\left(\left(\frac{1}{n}, \frac{1}{n}\right), (0, 0)\right) = \frac{1}{n}.$$

The result follows immediately from Proposition (2.1).

Proposition 2.2. If a sequence converges then its limit is unique.

Proof Suppose that the sequence $(x_n)_{n\in\mathbb{N}}$ converges to both x and y. Then, for every $\varepsilon > 0$ there exists a (sufficiently large) $N_0 \in \mathbb{N}$ such that

$$\forall n \in \mathbb{N}, \ n \geqslant N_0 \Longrightarrow d(x_n, x) < \frac{\varepsilon}{2} \ and \ d(x_n, y) < \frac{\varepsilon}{2}.$$

from which we conclude that for every $\varepsilon > 0$,

$$\forall n \in \mathbb{N}, \ n \geqslant N_0 \Longrightarrow d(x,y) < d(x,x_n) + d(x_n,y) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

i.e., d(x,y) = 0, namely x = y.

Proposition 2.3. Let F be a subset of a metric space (\mathbb{X},d) and \mathcal{L} is the set of all $x \in \mathbb{X}$ such that x is the limit of some sequence of elements of F. Then, F is closed if and only if $F = \mathcal{L}$.

Proof

- \implies) Suppose that F is closed.
- $\mathcal{L} \subseteq F$?) Take $x \in \mathcal{L}$, meaning that x is a limit of a sequence $(x_n)_{n \in \mathbb{N}}$ of elements of F. If $x \notin F$, then $x \in \mathbb{C}_{\mathbb{X}}F$ (which is an open), implying that there exists r > 0 such that $B(x,r) \subseteq \mathbb{C}_{\mathbb{X}}F$. Since $x_n \longrightarrow x$, there exists $N_0 \in \mathbb{N}$ such that for all, $n \geqslant N_0$ we have $d(x_n, x) < r$. This means $x_n \in B(x,r) \subseteq \mathbb{C}_{\mathbb{X}}F$, which contradicts the fact that $x_n \in F$.
- $F \subseteq \mathcal{L}$?) Let $x \in F$, then we can consider x as a limit of the constant sequence $x_n = x$ which implies that $x \in \mathcal{L}$.
- \iff) Suppose that the limit of all convergent sequence of F belongs to F. Let $x \in Cl(F)$. Then $B(x,r) \cap F \neq \emptyset$ for all r > 0. Thus, for all $n \in \mathbb{N}^*$, there exists x_n such that $x_n \in B(x,\frac{1}{n}) \cap F$. Then, (x_n) is a sequence of elements of F that satisfies $d(x_n,x) < \frac{1}{n}$ for all $n \in \mathbb{N}^*$, which

Then, (x_n) is a sequence of elements of F that satisfies $d(x_n, x) < \frac{1}{n}$ for all $n \in \mathbb{N}^*$, which implies, $x_n \longrightarrow x$. Therefore, $x \in F$ (by hypotheses), which implies that F is closed.

Using the previous proposition we obtain the following result.

Proposition 2.4. Let (X,d) be a metric space and F be a subset of X, then :

(2.2)
$$Cl(F) = \left\{ x \in \mathbb{X} : \exists (x_n) \subset F / \underset{n \longrightarrow +\infty}{lim} x_n = x \right\}$$

Proposition 2.5 (Sequential continuity). Let $(\mathbb{X}, d_{\mathbb{X}})$, $(\mathbb{Y}, d_{\mathbb{Y}})$ be two metric spaces and $f: (\mathbb{X}, d_{\mathbb{X}}) \longrightarrow (\mathbb{Y}, d_{\mathbb{Y}})$. Then, f is continuous at x_0 if and only if for every sequence $(x_n)_{n \in \mathbb{N}} \subset \mathbb{X}$, we have

$$\lim_{n \longrightarrow +\infty} x_n = x_0 \Longrightarrow \lim_{n \longrightarrow +\infty} f(x_n) = f(x_0) \quad (f \text{ is sequentially continuous}).$$

Proof

 \Longrightarrow) Suppose that f is continuous at x_0 and let (x_n) be a sequence in $\mathbb X$ that converges to x_0 . Since $x_n \longrightarrow x_0$,

$$\forall \varepsilon > 0, \ \exists n_0(\varepsilon) \in \mathbb{N} \ / \ \forall n \in \mathbb{N}, \ n \geqslant n_0 \Longrightarrow d_{\mathbb{X}}(x_n, x_0) < \varepsilon.$$

Since f is continuous at x_0 ,

$$\forall \varepsilon > 0, \ \exists \delta(\varepsilon, x_0) \ / \ \forall x \in \mathbb{X}, \ d_{\mathbb{X}}(x, x_0) < \delta \Longrightarrow d_{\mathbb{Y}}(f(x), f(x_0)) < \varepsilon.$$

Then, it is enough to take $\varepsilon = \delta$ to obtain,

$$\forall n \geqslant n_0, \ d_{\mathbb{X}}(x_n, x_0) < \delta = \varepsilon \Longrightarrow d_{\mathbb{Y}}(f(x_n), f(x_0)) < \varepsilon,$$

which shows that f is sequentially continuous.

 \Leftarrow Suppose that f is not continuous at x_0 . Then, there exists $\varepsilon > 0$ such that for all $\delta > 0$, there exists x_{δ} that satisfying,

$$d_{\mathbb{X}}(x_{\delta}, x_0) < \delta \ \ et \ d_{\mathbb{Y}}(f(x_{\delta}), f(x_0)) \geqslant \varepsilon.$$

Thus, for $\delta = \frac{1}{n}$ there exists a sequence (x_n) such that:

$$d_{\mathbb{X}}(x_n, x_0) < \frac{1}{n} \text{ et } d_{\mathbb{Y}}(f(x_n), f(x_0)) \geqslant \varepsilon.$$

This shows that (x_n) converges to x_0 , but $(f(x_n))$ does not converge to $f(x_0)$. Therefore f does not sequentially continuous at x_0 .

Remark
2.2. In the third chapter (Topological Spaces), we will demonstrate that in the more general context of topological spaces, continuity always implies sequential continuity; however, the converse is not true.

2.2Cauchy sequences and completeness

The definition of *Cauchy sequences* in general metric spaces is a straightforward generalization of their definition in the real line.

Definition 2.2. Let (X,d) be a metric space. A sequence $(x_n)_{n\in\mathbb{N}}$ of elements of X is called a Cauchy sequence if for every $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $d(x_n, x_m) < \varepsilon$ for all $n, m \ge n_0$. In other words,

 $\forall \varepsilon > 0, \exists n_0(\varepsilon) \in \mathbb{N} / \forall (n,m) \in \mathbb{N}^2, n,m \geqslant n_0 \Longrightarrow d(x_n,x_m) < \varepsilon.$

Example 2.4.

1. The sequence $(x_n)_{n\geqslant 1}$, where $x_n=1+\frac{1}{2}+\cdots+\frac{1}{n}$, does not satisfy Cauchy's criterion for convergence. Indeed, we have

$$|x_{2n} - x_n| = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \geqslant \frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n} = \frac{1}{2}.$$

Thus, it is not the case that $|x_n - x_m| \to 0$ as n and m become large.

2. In $(C[0,1],\mathbb{R})$, the sequence $(f_n)_{n\geqslant 1}$ given by

$$f_n(x) = \frac{nx}{n+x}, \quad x \in [0,1],$$

is Cauchy in the uniform metric. For $m \ge n$, the difference between the functions is given by

$$f_m(x) - f_n(x) = \frac{mx}{m+x} - \frac{nx}{n+x} = \frac{(m-n)x^2}{(m+x)(n+x)}.$$

Since this function is continuous on [0,1], it attains its maximum at some point $x_0 \in [0,1]$. Thus, we have

$$d(f_m, f_n) = \sup_{x \in [0, 1]} |f_m(x) - f_n(x)| = \frac{(m - n)x_0^2}{(m + x_0)(n + x_0)} \le \frac{x_0^2}{n + x_0} \le \frac{1}{n} \to 0,$$

for large m and n.

3. If (x_n) is a Cauchy sequence in the discrete metric space (\mathbb{X}, δ) , then $\delta(x_n, x_m) < \varepsilon \Longrightarrow$ $x_n = x_m$ for any $\varepsilon \leq 1$. Thus, the sequence (x_n) is convergent.

Proposition 2.6. In a metric space (X,d), we have:

- 1. Every convergent sequence is a Cauchy sequence.
- 2. Every Cauchy sequence is bounded.
- 3. Every subsequence of a Cauchy sequence is also a Cauchy sequence.
- 4. Every Cauchy sequence that has a convergent subsequence is convergent.

Proof

1. If $x_n \longrightarrow x_0$, then for every $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$, we have $d(x_n, x_0) < \frac{\varepsilon}{2}$. Therefore, if $n \ge n_0$ and $m \ge n_0$, we obtain

$$d(x_n, x_m) \leqslant d(x_n, x_0) + d(x_m, x_0) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

- 2. If (x_n) is a Cauchy sequence, then for $\varepsilon = 1$, there exists $n_0 \in \mathbb{N}$ such that $d(x_n, x_{n_0}) < 1$ for all $n \ge n_0$. Let $r = \max(d(x_{n_0}, x_1), \dots, d(x_{n_0}, x_{n_0-1}), 1)$. Then, for all $n \in \mathbb{N}$, we have $d(x_n, x_{n_0}) < r$, which implies that $(x_n) \subset B(x_{n_0}, r)$.
- 3. Obvious.
- 4. Suppose $x_{n_k} \longrightarrow x_0$. Then, for every $\varepsilon > 0$, there exists $n_1 \in \mathbb{N}$ such that for all $n_k \geqslant n_1$, we have $d(x_{n_k}, x_0) < \frac{\varepsilon}{2}$. Since (x_n) is a Cauchy sequence, there exists $n_2 \in \mathbb{N}$ such that for all $n, m \geqslant n_2$, we have $d(x_n, x_m) < \frac{\varepsilon}{2}$. Let $n_0 = \max(n_1, n_2)$ and choose k such that $n_k \geqslant n_0$ to obtain:

$$\forall n \in \mathbb{N}, \ n \ge n_0 \Longrightarrow d(x_n, x_0) \le d(x_n, x_{n_k}) + d(x_{n_k}, x_0) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus, $x_n \longrightarrow x_0$.

Definition 2.3. A metric space (X,d) is said to be complete if every Cauchy sequence in (X,d) converges to a limit that is also in X.

Example

2.5

- 1. The space $(\mathbb{R}, |.|)$ is complete because every Cauchy sequence is convergent in \mathbb{R} .
- 2. The Cauchy sequence $\left(\frac{1}{n}\right)$ does not converge in (0,1), and therefore (0,1) is not complete.

3. In a discrete metric space, every Cauchy sequence is convergent (see Example 2.4(3)), and therefore every discrete metric space is complete.

Proposition 2.7. Let $(\mathbb{X}, d_{\mathbb{X}})$ and $(\mathbb{Y}, d_{\mathbb{Y}})$ be two metric spaces. If $f: (\mathbb{X}, d_{\mathbb{X}}) \longrightarrow (\mathbb{Y}, d_{\mathbb{Y}})$ is uniformly continuous and (x_n) is a Cauchy sequence in $(\mathbb{X}, d_{\mathbb{X}})$, then $(f(x_n))$ is a Cauchy sequence in $(\mathbb{Y}, d_{\mathbb{Y}})$.

Proof If (x_n) is a Cauchy sequence in (X, d_X) , then we have:

$$\forall \varepsilon > 0, \ \exists \ n_0(\varepsilon) \in \mathbb{N} \ such \ that \ \forall (n,m) \in \mathbb{N}^2, \ n,m \geqslant n_0 \Longrightarrow d_{\mathbb{X}}(x_n,x_m) < \varepsilon.$$

Since f is uniformly continuous, for $\varepsilon = \delta$, we obtain:

$$\forall (n,m) \in \mathbb{N}^2, \ n,m \ge n_0 \Longrightarrow d_{\mathbb{Y}}(f(x_n),f(x_m)) < \varepsilon.$$

Therefore $(f(x_n))$ is a Cauchy sequence in \mathbb{Y} .

Remark 2.3. The previous proposition is false if f is only continuous. For example, consider the function $f:((-1,1),|.|) \longrightarrow (\mathbb{R},|.|)$ defined by $f(x) = \frac{x}{1-|x|}$. Let $x_n = 1 - \frac{1}{n}$. The sequence $(f(x_n))$ is not a Cauchy sequence.

Proposition 2.8. Let $(\mathbb{X}, d_{\mathbb{X}})$ and $(\mathbb{Y}, d_{\mathbb{Y}})$ be two metric spaces, and let $f: (\mathbb{X}, d_{\mathbb{X}}) \longrightarrow$ $(\mathbb{Y},d_{\mathbb{Y}})$ be a uniformly continuous homeomorphism. If $(\mathbb{Y},d_{\mathbb{Y}})$ is complete, then $(\mathbb{X},d_{\mathbb{X}})$ is also complete.

Proof Let (x_n) be a Cauchy sequence in \mathbb{X} . Then, by Proposition (2.7), $(f(x_n))$ is a Cauchy sequence in \mathbb{Y} . Since \mathbb{Y} is a complete space, we conclude that $(f(x_n))$ is convergent. This implies the convergence of (x_n) in \mathbb{X} because f^{-1} is continuous.

Remark 2.4. The converse of the previous proposition is not true.

Example **2.6.** Let (X, d_X) and (Y, d_Y) be two metric spaces defined as follows:

- $\mathbb{X} = [0,1]$ is the closed interval in \mathbb{R} , with the standard metric $d_{\mathbb{X}}(x,y) = |x-y|$. This space is complete because every Cauchy sequence in [0,1] converges to a point in [0,1].
- $\mathbb{Y} = (0,1)$ is the open interval in \mathbb{R} , with the standard metric $d_{\mathbb{Y}}(x,y) = |x-y|$. This space is not complete. For example, the sequence $x_n = \frac{1}{n}$ is a Cauchy sequence in (0,1), but it converges

to 0, which is not in (0,1).

Now define a homeomorphism $f:[0,1] \to (0,1)$ by:

$$f(x) = \frac{x}{2} + \frac{1}{4}.$$

This function is uniformly continuous and is a homeomorphism because it is continuous, bijective, and its inverse is also continuous. Thus, the converse of the proposition is false: even though $(\mathbb{X}, d_{\mathbb{X}})$ is complete and f is a uniformly continuous homeomorphism, $(\mathbb{Y}, d_{\mathbb{Y}})$ is not complete.

Using the previous proposition, we obtain the following result.

Proposition 2.9. If (X, d_X) and (Y, d_Y) are two isometric spaces, then (X, d_X) is complete if and only if (Y, d_Y) is complete.

Proof Evident, because every isometry and its inverse are uniformly continuous homeomorphisms.

Proposition 2.10.

- 1. Every complete subset in a metric space (X, d_X) is closed.
- 2. Every closed subset in a complete metric space (X, d_X) is complete.

Proof

- 1. Let A be a complete subset of \mathbb{X} , and let $x \in Cl(A)$. Then there exists a sequence (x_n) of elements in A such that $x_n \longrightarrow x$ (see Proposition (2.4)). Since (x_n) is a Cauchy sequence in A, and A is complete, it follows that $x \in A$. This shows that A is closed.
- 2. Let (X, d_X) be a complete metric space, and let (x_n) be a Cauchy sequence in a closed subset $A \subset X$. Then (x_n) is a Cauchy sequence in X, which is complete, so $x_n \longrightarrow x \in X$. Given that A is closed, we deduce that $x \in A$, which shows that A is complete.

Using the previous proposition, we obtain the following result.

Proposition 2.11. Let X be a complete metric space, and let A be a subset of X. Then, the metric subspace (A, d_A) is complete if and only if A is closed in X.

Example 2.7

- 1. The intervals (a,b), $(a,+\infty)$, and $(-\infty,b)$ are not complete because they are not closed.
- 2. The intervals [a,b], $[a,+\infty)$, and $(-\infty,b]$ are complete because they are closed in \mathbb{R} .

Proposition 2.12. The product of a finite number of metric spaces is complete if and only if all its factors are complete.

Proof

Exercise.

2.3 Contractive mapping theorem

Definition 2.4. Let \mathbb{X} be a set and let $f: \mathbb{X} \to \mathbb{X}$. A point $x \in \mathbb{X}$ is called a fixed point of f if f(x) = x.

Theorem 2.1 (Banach fixed point theorem). Let (X, d_X) be a complete metric space. If $f: X \longrightarrow X$ is a contraction (see Definition (??)), then it has a unique fixed point $x \in X$.

Proof Consider a recursive sequence given by $x_{n+1} = f(x_n)$ with $x_0 \in \mathbb{X}$. For all $n, m \in \mathbb{N}$, if we assume that n > m, we obtain:

(1)
$$d(x_n, x_m) \leqslant \sum_{\ell=m}^{n-1} d(x_{\ell+1}, x_{\ell}) = \sum_{\ell=m}^{n-1} d\left(f^{\ell}(x_1), f^{\ell}(x_0)\right).$$

On the other hand, using the contraction property, we obtain:

(2)
$$d(f^{\ell}(x_1), f^{\ell}(x_0)) \leq kd(f^{\ell-1}(x_1), f^{\ell-1}(x_0)) \leq k^{\ell}d(x_1, x_0).$$

Now, keeping in mind that $0 \le k < 1$ and using (1) and (2), we obtain:

(3)
$$d(x_n, x_m) \leqslant \sum_{\ell=m}^{n-1} k^{\ell} d(x_1, x_0) = k^m \frac{1 - k^{n-m-1}}{1 - k} d(x_1, x_0) \leqslant \frac{k^m}{1 - k} d(x_1, x_0).$$

Since $\lim_{m\to\infty}\frac{k^m}{1-k}=0$, we conclude from inequality (3) that (x_n) is a Cauchy sequence and therefore convergent to $x\in\mathbb{X}$ because $(\mathbb{X},d_{\mathbb{X}})$ is complete. Since f is continuous, we obtain:

$$f(x) = f\left(\lim_{n \to \infty} x_n\right) = \lim_{n \to \infty} f\left(x_n\right) = \lim_{n \to \infty} x_{n+1} = x.$$

Thus, x is a fixed point of f.

For uniqueness, suppose that x_1 and x_2 are two fixed points of f. Then we have:

$$d(x_1, x_2) = d(f(x_1), f(x_2)) \le kd(x_1, x_2) \Longrightarrow (1 - k)d(x_1, x_2) \le 0.$$

Since $0 \le k < 1$, we conclude from the last inequality that $x_1 = x_2$.

Remark 2.5.

- 1. A function having one or multiple fixed points does not imply that it is a contracting function.
- 2. The assumption that "f is contracting" cannot generally be replaced by the weaker assumption $d(f(x), f(y)) \leq d(x, y)$ for all $x \neq y$, as demonstrated by the following example:

$$f: (\mathbb{R}, |.|) \longrightarrow (\mathbb{R}, |.|)$$
 such that $f(x) = \sqrt{1 + x^2}$.

3. The assumption that "X is complete" is fundamental. For example, if $X = \left(0, \frac{1}{4}\right)$ (which is not complete) and $f: X \longrightarrow X$ is defined by $f(x) = x^2$, then f is a contraction on X that has no fixed point in X.

This theorem can be easily generalized in the following way.

Theorem 2.2. Let (X, d_X) be a complete metric space and let $f: X \longrightarrow X$. If there exists $n \in \mathbb{N}^*$ such that $f^{(n)}$ is a contraction, then f has a unique fixed point.

Proof Since $(\mathbb{X}, d_{\mathbb{X}})$ is complete and $f^{(n)}$ is a contraction, $f^{(n)}$ has a unique fixed point $x_0 \in \mathbb{X}$. Since $f^{(n)}(f(x_0)) = f(f^{(n)}(x_0)) = f(x_0)$, it follows, by the uniqueness of the fixed point of $f^{(n)}$, that $f(x_0) = x_0$, and thus x_0 is the unique fixed point of f.

Proposition 2.13. If $f: \mathbb{R} \longrightarrow \mathbb{R}$ with $|f'(x)| \leq k < 1$, then f has a unique fixed point.

Proof Using Proposition (??), we conclude that f is a contraction on \mathbb{R} , and since \mathbb{R} is complete, we conclude by Theorem (2.1) that f has a unique fixed point.

Example 2.8. Let $f: [0,1] \longrightarrow [0,1]$ be defined by $f(x) = \frac{e^x}{5}$. We have $|f'(x)| = \frac{e^x}{5} \leqslant \frac{e}{5} < 1$, and [0,1] is complete because it is a closed subset of \mathbb{R} , which is complete. Therefore, using Theorem (2.1), we conclude that f has a unique fixed point.

BIBLIOGRAPHY

- [1] N. Bourbaki. Topologie générale, Chapitres 1 à 4. Hermann, Paris, 1971.
- [2] H. Brezis. Analyse Fonctionnelle. Théorie et applications. Masson, (1983).
- [3] G. Choquet. Cours d'analyse, tome II, Topologie. Masson, Paris, 1964.
- [4] G. Christol. *Topologie*. Ellipses, 1997.
- [5] J. Dieudonné. Éléments d'analyse, tome I : fondements de l'analyse moderne. Gauthier-Villars, Paris, 1968.
- [6] J. Dixmier. Topologie générale. Presses universitaires de France, 1981.
- [7] J.L. Kelley. General Topology. Van Nostrand, (1955).
- [8] F. Nier, D. Iftimie. Introduction à la Topologie. Université de Rennes 1.
- [9] C. Tisseron. Notions de Topologie. Introduction aux espaces fonctionnels. Hermann (1985).
- [10] B. Yallaoui. Topologie Générale Elémentaire. Université Ferhat Abbas, Sétif 1.