

وزارة التعليم العالي والبحث العلمي

Sétif 1 University-Ferhat ABBAS Faculty of Sciences Department of Mathematics

INTRODUCTION TO METRIC & TOPOLOGICAL SPACES

FOR THE SECOND YEAR LMD MATHEMATICS STUDENTS

Prepared by:

Dr. CHOUGUI Nadhir

2024/2025

CONTENTS

Introduction			ii	
3	3 Topological spaces		1	
	3.1	Topology, Open sets and Closed sets	1	
	3.2	Neighborhoods	4	
	3.3	Comparison of topologies	7	
	3.4	Base and Neighborhood base	8	
	3.5	Interior points, Adherent points, Accumulation points, Isolated points, Boundary		
		points, Exterior points and Dense sets	11	
		3.5.1 Interior points	11	
		3.5.2 Adherent points	13	
		3.5.3 Accumulation points	15	
		3.5.4 Isolated Points	15	
		3.5.5 Boundary points	16	
		3.5.6 Exterior points	17	
		3.5.7 Dense sets	17	
	3.6	Separated Spaces (Hausdorff Spaces))	19	
	3.7	Induced topology, Product topology	20	
	0.1	3.7.1 Induced topology	20	
		3.7.2 Product topology	$\frac{20}{24}$	
	3.8	Convergent sequences	27	
	3.9	Continuous applications	32	
		Open and closed maps	36	
			37	
	0.11	Homeomorphism	31	
Bibliography			39	

CHAPTER 3

TOPOLOGICAL SPACES

3.1 Topology, Open sets and Closed sets

Let X be a non-empty set and $\mathcal{P}(X)$ be the power set of X.

Definition 3.1. A topology on X is a collection of sets $T \subseteq P(X)$ that satisfies :

- A_1) \emptyset and \mathbb{X} are elements of \mathcal{T} ,
- A_2) any union (finite or infinite) of elements of \mathcal{T} is an element of \mathcal{T} , that is, for any collection $\{O_i \in \mathcal{T}: i \in I\}$ we have $\bigcup_{i \in I} O_i \in \mathcal{T}$,
- A₃) any finite intersection of elements of \mathcal{T} is an element of \mathcal{T} , that is, for any collection $\{O_i \in \mathcal{T}: 1 \leq i \leq n\}$ we have $\bigcap_{i=1}^n O_i \in \mathcal{T}$.

The pair (X, T) is called a topological space, and the elements of T are called open sets of the topology.

Example

3.1. Let $\mathbb{X} = \{1,2\}$. The topologies defined on \mathbb{X} are:

$$\mathcal{T}_{1} = \{\emptyset, \mathbb{X}\}.
\mathcal{T}_{2} = \{\emptyset, \mathbb{X}, \{1\}\}.
\mathcal{T}_{3} = \{\emptyset, \mathbb{X}, \{2\}\}.
\mathcal{T}_{4} = \{\emptyset, \mathbb{X}, \{1\}, \{2\}\}.$$

Example 3.2. Let $\mathbb{X} = \{x, y, z, t, s, w\}$ and $\mathcal{T} = \{\mathbb{X}, \emptyset, \{x\}, \{z, t\}, \{x, z, t\}, \{y, z, t, s, w\}\}$. Then \mathcal{T} is a topology on \mathbb{X} as it satisfies conditions $(A_1), (A_2)$ and (A_3) of Definition (3.1).

Example 3.3. Let $\mathbb{X} = \{x, y, z, t, s\}$ and $\mathcal{T} = \{\mathbb{X}, \emptyset, \{x\}, \{z, t\}, \{x, z, s\}, \{y, z, t\}\}$. Then \mathcal{T} is not a topology on \mathbb{X} as the union $\{z, t\} \cup \{x, z, s\} = \{x, z, t, s\}$ of two members of \mathcal{T} does not belong to \mathcal{T} ; that is, \mathcal{T} does not satisfy condition (A_2) of Definition (3.1).

Example 3.4. Let \mathbb{N} the set of all natural numbers and let \mathcal{T} the collection consisting of \mathbb{N} , \emptyset and all finite subsets of \mathbb{N} . Then \mathcal{T} is not a topology on \mathbb{N} , since the infinite union $\{3\} \cup \{4\} \cup \{5\} \cup \cdots \cup \{n\} \cup \cdots = \{3,4,5,\ldots,\{n\},\ldots\}$ of members of \mathcal{T} does not belong to \mathcal{T} ; that is, \mathcal{T} does not have property (A_2) of Definition (3.1).

Definition 3.2. Let X be any non-empty set and T the collection of all sets of X (the power set of X). Then T is called the discrete topology on the set X and is denoted by T_{Disc} . The topological space (X, T_{Disc}) is called a discrete space.

Definition 3.3. Let X be any non-empty set and $\mathcal{T} = \{X,\emptyset\}$. Then \mathcal{T} is called the indiscrete topology or trivial topology and is denoted by \mathcal{T}_{Ind} . The topological space (X,\mathcal{T}_{Ind}) is called an indiscrete space.

Remark 3.1. Every set indeed admits at least two topologies.

Definition 3.4. Let (X, \mathcal{T}) be a topological space. A subset F of X is said to be a closed set in (X, \mathcal{T}) if its complement, namely $\mathcal{C}_X F$ or $X \setminus F$, is open in (X, \mathcal{T}) . We denote by F the set of all closed subsets in (X, \mathcal{T}) .

Example

3.5. In Example (3.1), if we consider the topology \mathcal{T}_2 , then the set $\{2\}$ is closed.

Example

3.6. In Example (3.2), the closed sets are

$$\mathcal{F} = \{\emptyset, \mathbb{X}, \{y, z, t, s, w\}, \{x, y, s, w\}, \{y, s, w\}, \{x\}\}.$$

Example

3.7. Let $\mathbb{X} = (\mathbb{R}, |\cdot|)$. Then \mathbb{N} and \mathbb{Z} are closed.

Proposition 3.1. Let (X, T) be a topological space. Then, the collection F of closed sets in X satisfies the following properties:

- P_1) \mathbb{X} and \emptyset are closed sets,
- P_2) any finite union of closed sets is closed,
- P_3) any arbitrary intersection of closed sets is closed.

Proof These properties of closed sets directly follow from the properties verified by open sets in a topology. Indeed:

- We have seen that X and \emptyset are open, and since $C_X\emptyset = X$ and $C_XX = \emptyset$, we conclude that X and \emptyset are closed. Thus, (P_1) is verified.
- Let $\{F_i : i = 1, 2, ..., n\}$ be a finite family of closed sets in \mathbb{X} . Then, for all i = 1, 2, ..., n, their complements $\mathbb{C}_{\mathbb{X}}F_i$ are open sets. But $\mathbb{C}_{\mathbb{X}}\left(\bigcup_{i=1}^n F_i\right) = \bigcap_{i=1}^n \mathbb{C}_{\mathbb{X}}F_i$ is an open set (because it is a finite intersection of open sets). Hence $\bigcup_{i=1}^n F_i$ is a closed set. Thus, (P_2) is verified.
- Let $\{F_i : i \in I\}$ be any family of closed sets of X. Then, for all $i \in I$, their complements $\mathbb{C}_X F_i$ are open sets. But $\mathbb{C}_X \left(\bigcap_{i \in I} F_i\right) = \bigcup_{i \in I} \mathbb{C}_X F_i$ is an open set (because it is an union of any open sets). Hence, $\bigcap_{i \in I} F_i$ is a closed set. Thus, (P_3) is verified.

Remark 3.2. A topology can be defined either by the collection of its open sets or by the collection of its closed sets.

Remark 3.3. A subset of a topological space can be both open and closed. Moreover, a subset of a topological space can be neither open nor closed.

Example

- **3.8.** If we consider Example(3.2), we see that
- 1. the set $\{x\}$ is both open and closed;
- 2. the set $\{y,z\}$ is neither open nor closed.

Definition 3.5. A subset A of a topological space (X, T) is said to be clopen if it is both open and closed set in (X, T).

Example 3 0

1. In a discrete space all subsets in (X, \mathcal{T}_{Dis}) are clopen.

- 2. In a indiscrete space the only clopen subsets in (X, \mathcal{T}_{Ind}) are X and \emptyset .
- 3. In every topological space (X, T) both X and \emptyset are clopen.

Definition 3.6. Let X be a non-empty set, and

$$\mathcal{T}_{Cof} = \{ O \subseteq \mathbb{X} : \mathcal{C}_{\mathbb{X}}O \text{ is finite} \} \cup \{\emptyset\}.$$

Then, (X, \mathcal{T}_{Cof}) is a topology, and is called the cofinite topology on X.

Once again is necessary to check that \mathcal{T}_{Cof} in the previous definition is indeed a topology; that is, that it satisfies each of the conditions of Definition(3.1).

3.2 Neighborhoods

Definition 3.7. Let (X, T) be a topological space. A subset N_x of X is called a neighborhood of x in X if there exists an open set O_x of X such that $x \in O_x \subseteq N_x$. The collection of neighborhoods of x is denoted by $\mathcal{N}(x)$ and is called the neighborhood system at x.

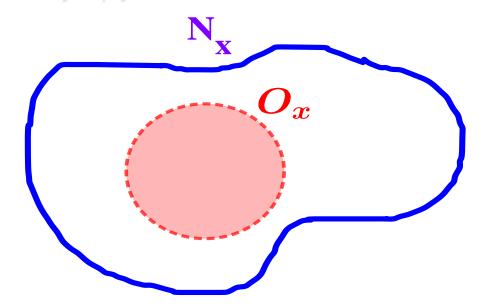


Figure 3.1: Neighborhood N_x

The previous definition can be written in the following form:

(3.1)
$$(N_x \text{ is a neighborhood of } x) \Leftrightarrow (\exists O_x \in \mathcal{T} / x \in O_x \subseteq N_x).$$

Definition 3.8. Let (X, T) be a topological space. We say that a subset N of X is a neighborhood of a non-empty subset A of X if there exists an open set O in T such that $A \subseteq O \subseteq N$. In other words:

 $(3.2) (N is a neighborhood of A) \Leftrightarrow (\exists O \in \mathcal{T} such that A \subseteq O \subseteq N).$

Example

3.10.

- 1. Let (X, \mathcal{T}_{Ind}) . Then, for all $x \in X$ we have $\mathcal{N}(x) = \{X\}$.
- 2. Let (X, \mathcal{T}_{Disc}) and $x \in X$. Then, every subset of X that contains x is an element of $\mathcal{N}(x)$.
- 3. Let (X, T) = (R, |.|) and $x \in R$. Then, every subset of R that contains an interval centered at x is a neighborhood of x.
- 4. Let $X = \{1, 2, 3, 4\}$ and $T = \{\emptyset, X, \{1\}, \{4\}, \{1, 4\}\}$. Then we have:
 - $\mathcal{N}(1) = \{\{1\}, \{1,2\}, \{1,3\}, \{1,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \mathbb{X}\};$
 - $\mathcal{N}(2) = \{X\};$
 - $\mathcal{N}(\{1,4\}) = \{\{1,4\},\{1,2,4\},\{1,3,4\},\mathbb{X}\}.$

Remark 3.4. It follows from the previous definition that if $B \subset A$, then every neighborhood of A is a neighborhood of B.

Proposition 3.2. Let (X, T) be a topological space and A a subset of X. Then, we have

 $(3.3) (N is a neighborhood of A) \Longleftrightarrow (\forall x \in A : N \in \mathcal{N}(x)).$

Proof

- \Longrightarrow) Obvious.
- \iff Suppose that N is a neighborhood of every point in A. Then, we have

$$(3.4) \forall x \in A, \exists O_x \in \mathcal{T} / x \in O_x \subseteq N,$$

from which we conclude that $A \subseteq \bigcup_{x \in A} O_x \subseteq N$, and since $\bigcup_{x \in A} O_x \in \mathcal{T}$, it follows that N is a neighborhood of A.

Proposition 3.3. Let (X, T) be a topological space. A non-empty set A is an open set in X if and only if A is a neighborhood of each of its points.

Proof

- \Longrightarrow) Suppose A is an open set in \mathbb{X} . Then, using Definition (3.7), we conclude that A is a neighborhood of each of its points.
- \Leftarrow Suppose A is a neighborhood of each of its points. Then, for every $x \in A$, there exists $O_x \in \mathcal{T}$ such that $x \in O_x \subseteq A$, hence $A = \bigcup_{x \in A} O_x$. Therefore, A is open as a union of open sets.

Proposition 3.4. Let (X, T) be a topological space. The neighborhoods of a point satisfy the following properties:

- 1. For every $N \in \mathcal{N}(x)$, we have $x \in N$.
- 2. For every $N \in \mathcal{N}(x)$ and every $\mathbf{U} \subset \mathbb{X}$, if $N \subset \mathbf{U}$ then $\mathbf{U} \in \mathcal{N}(x)$.
- 3. Any finite intersection of neighborhoods of x is a neighborhood of x.
- 4. For every $N \in \mathcal{N}(x)$, there exists $W \in \mathcal{N}(x)$ such that for every $a \in W$, we have $N \in \mathcal{N}(a)$.

Proof

- The two properties 1 and 2 are evident.
- For the third property, if $\{N_i : i = 1,...,n\}$ is a family of neighborhoods of $x \in \mathbb{X}$, then for all i = 1,...,n, there exists $O_i \in \mathcal{T}$ such that $x \in O_i \subseteq N_i$, from which we conclude that $x \in \bigcap_{i=1}^n O_i \subseteq \bigcap_{i=1}^n N_i$. We deduce that $\bigcap_{i=1}^n N_i \in \mathcal{N}(x)$ because $\bigcap_{i=1}^n O_i \in \mathcal{T}$.
- For the fourth property, if $N \in \mathcal{N}(x)$, then there exists $O \in \mathcal{T}$ such that $x \in O \subseteq N$. This implies that N is a neighborhood of every point $a \in O$. Then, it suffices to take W = O to verify that property (4) is holds.

3.3 Comparison of topologies

Definition 3.9. Let \mathcal{T}_1 and \mathcal{T}_2 be two topologies on a set \mathbb{X} . We say that \mathcal{T}_1 is finer than \mathcal{T}_2 (or that \mathcal{T}_2 is coarser than \mathcal{T}_1) if $\mathcal{T}_2 \subseteq \mathcal{T}_1$. In other words, \mathcal{T}_1 is finer than \mathcal{T}_2 if one of the following three statements holds:

- 1. Every open set in (X, \mathcal{T}_2) is also an open set in (X, \mathcal{T}_1) .
- 2. Every closed set in (X, \mathcal{T}_2) is also a closed set in (X, \mathcal{T}_1) .
- 3. If $x \in \mathbb{X}$, then every neighborhood of x in $(\mathbb{X}, \mathcal{T}_2)$ is also a neighborhood of x in $(\mathbb{X}, \mathcal{T}_1)$.

Remark 3.5. If \mathcal{T}_1 is finer than \mathcal{T}_2 and \mathcal{T}_2 is finer than \mathcal{T}_1 , we say that \mathcal{T}_1 and \mathcal{T}_2 are equivalent.

Example 3.11. For any topological space (X, T), the indiscrete topology on X is coarser than T which in turn is coarser than the discrete topology on X.

Example 3.12. The Sierpinski space \mathbb{S} consists of two points $\{0,1\}$ with the topology $\{\emptyset,\{1\},\{0,1\}\}\}$. The topology of Sierpinski space is finer than the indiscrete topology $\mathcal{T}_{Ind} = \{\emptyset,\{0,1\}\}\}$ on $\{0,1\}$ but coarser than the discrete topology $\mathcal{T}_{Disc} = \{\emptyset,\{0\},\{1\},\{0,1\}\}\}$ on $\{0,1\}$.

Example 3.13. If $\mathbb{X} = \{x, y, z\}$, then $\mathcal{T}_1 = \{\emptyset, \{x\}, \mathbb{X}\}$, $\mathcal{T}_2 = \{\emptyset, \{x, y\}, \mathbb{X}\}$, and $\mathcal{T}_3 = \{\emptyset, \{x\}, \{x, y\}, \mathbb{X}\}$ are three distinct topologies on \mathbb{X} . The topologies \mathcal{T}_1 and \mathcal{T}_2 are coarser than \mathcal{T}_3 ; however, \mathcal{T}_1 and \mathcal{T}_2 are not comparable.

Proposition 3.5. Let $\{\mathcal{T}_i : i \in I\}$ be a collection of topologies on \mathbb{X} . Then, $\bigcap_{i \in I} \mathcal{T}_i$ is a topology on \mathbb{X} that is the coarsest of each of the topologies \mathcal{T}_i .

Proof

Obvious.

Proposition 3.6. Let β be a family of subsets of \mathbb{X} . There exists a smallest topology that contains β . This topology is called the topology generated by β .

Proof The set of topologies that contain β is not empty because it contains the discrete topology. Therefore, it is enough to take the intersection of these topologies.

3.4 Base and Neighborhood base

Definition 3.10. Let (X, T) be a topological space. A **basis** for the topology T is a family $\mathfrak{B} \subseteq T$ such that every set in T is a union of sets from \mathfrak{B} .

Example

3.14.

1. Let the topological space $(\mathbb{R}, |.|)$ and $x \in \mathbb{R}$. The collection:

$$\mathfrak{B} = \{ |x,y[: x,y \in \mathbb{R} \},$$

is a basis for the usual topology.

2. In the topological space (X, \mathcal{T}_{Disc}) , the collection:

$$\mathfrak{B} = \{ \{ x \} : x \in \mathbb{X} \},\$$

is a basis for the discrete topology.

3. Let $X = \{x, y, z\}$ and $T = \{\emptyset, \{x\}, \{y\}, \{x, y\}, X\}$. The collection:

$$\mathfrak{B} = \{\{x\}, \{y\}, \mathbb{X}\},\$$

is a basis for this topology.

- 4. If (X, T) is a topological space, then T is a basis for itself.
- 5. In the topological space (X, \mathcal{T}_{Ind}) , the collection:

$$\mathfrak{B} = \{ \mathbb{X} \},$$

is a basis for the indiscrete topology.

Remark 3.6. If \mathfrak{B} is a basis for a topological space $(\mathbb{X}, \mathcal{T})$ and \mathfrak{B}' is a family that contains \mathfrak{B} , then by using the previous definition, we conclude that \mathfrak{B}' is another basis for \mathcal{T} . Therefore, a topological space can have multiple bases.

Proposition 3.7. Any basis \mathfrak{B} of a topology \mathcal{T} on \mathbb{X} has the following two properties:

- 1. For every $x \in \mathbb{X}$, there exists $B \in \mathfrak{B}$ such that $x \in B$.
- 2. If $B_1, B_2 \in \mathfrak{B}$ and $x \in B_1 \cap B_2$, then there exists $B_3 \in \mathfrak{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$

Proof Suppose that \mathfrak{B} is a basis of the topology \mathcal{T} .

- 1. Since \mathbb{X} is an open set, we have $\mathbb{X} = \bigcup_{B \in \mathfrak{B}} B$ (see definition (3.10)), from which it follows that for every $x \in \mathbb{X}$, there exists $B \in \mathfrak{B}$ such that $x \in B$.
- 2. If $B_1, B_2 \in \mathfrak{B}$, then $B_1, B_2 \in \mathcal{T}$ (since $\mathfrak{B} \subseteq \mathcal{T}$), which implies that $B_1 \cap B_2 \in \mathcal{T}$. Thus, $B_1 \cap B_2 = \bigcup_{B \in \mathfrak{B}} B$ (see definition (3.10)). Therefore, for every $x \in B_1 \cap B_2$, there exists $B_3 \in \mathfrak{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

Proposition 3.8. If \mathfrak{B} is a family of subsets of a set \mathbb{X} that satisfies the two properties of Proposition (3.7), then $\mathcal{T} = \{ \bigcup B : B \in \mathfrak{B} \}$ is a topology on \mathbb{X} .

Proof . We leave it as an exercise.

Now, using the two previous propositions, we obtain the following result:

Proposition 3.9. Let (X, T) be a topological space. Then, a family of subsets \mathfrak{B} of X is a basis for T if and only if \mathfrak{B} satisfies the two properties of Proposition (3.7).

Proposition 3.10. Let $(\mathbb{X}, \mathcal{T})$ be a topological space and \mathfrak{B} a subset of \mathcal{T} . Then, \mathfrak{B} is a basis for \mathcal{T} if and only if for every $O \in \mathcal{T}$ and for every $x \in O$, there exists $U_x \in \mathfrak{B}$ such that: $x \in U_x \subseteq O$.

Proof

- \iff It is clear that $O = \bigcup_{x \in O} U_x$, hence \mathfrak{B} is a basis for \mathcal{T} .
- \Longrightarrow) If $\mathfrak B$ is a basis for $\mathcal T$, then every subset O of $\mathcal T$ is a union of elements of $\mathfrak B$, which means that for each element $x \in O$, there exists $U_x \in \mathfrak B$ such that $x \in U_x \subset O$.

Proposition 3.11. Let \mathfrak{B}_1 be a basis of a topology \mathcal{T} and \mathfrak{B}_2 a family of subsets of \mathcal{T} . If every element of \mathfrak{B}_1 is a union of elements of \mathfrak{B}_2 , then \mathfrak{B}_2 is a basis for \mathcal{T} .

Proof Let $O \in \mathcal{T}$. Then, there exists $\{O_i : i \in I \text{ and } O_i \in \mathfrak{B}_1\}$ such that $O = \bigcup_{i \in I} O_i$ (because \mathfrak{B}_1 is a base for \mathcal{T}) and since every element of \mathfrak{B}_1 is a union of elements of \mathfrak{B}_2 , there exists $\{U_{i,j} : j \in J \text{ and } U_{i,j} \in \mathfrak{B}_2\}$ such that $O_i = \bigcup_{j \in J} U_{i,j}$ for all $i \in I$. Thus, we obtain $O = \bigcup_{(i,j) \in I \times J} U_{i,j}$. Therefore, \mathfrak{B}_2 is a base for \mathcal{T} .

Definition 3.11. A collection $S(x) \subseteq \mathcal{N}(x)$ is called a neighborhood base at x if for every neighborhood N_x , there is a neighborhood $W_x \in S(x)$ such that $W_x \subseteq N_x$. We refer to the sets in S(x) as basic neighborhoods of x.

Example

3.15.

1. Let (X, T) be a topological space. Then, we have:

$$\mathcal{S}(x) = \{ O \in \mathcal{T} : x \in O \}$$

is a neighbourhoods base of x.

2. In the topological space (X, \mathcal{T}_{Disc}) , we have:

$$\mathcal{S}(x) = \{\{x\}\}\$$

is a neighborhoods base of x.

3. Let the topological space $(\mathbb{R},|.|)$ and $x \in \mathbb{R}$. Then, we have:

$$S(x) = \{(x - \varepsilon, x + \varepsilon) : \varepsilon > 0\}$$

is a neighborhoods base of x. For example:

$$\mathcal{S}(x) = \left\{ \left(x - \frac{1}{n}, x + \frac{1}{n} \right) : n \in \mathbb{N}^* \right\}$$

is a countable neighborhoods base of x.

3.5 Interior points, Adherent points, Accumulation points, Isolated points, Boundary points, Exterior points and Dense sets.

3.5.1 Interior points

Definition 3.12. Let A be a subset of a topological space (X, T). We say that x is an interior point of A if A is a neighborhood of x, in other words,

(3.5) $x \text{ is an interior point of } A \iff A \in \mathcal{N}(x).$

The set of all interior points of A is called the interior or the interior set of A and is denoted by Int(A).

Example

3.16.

- 1. Consider the topological space (X, \mathcal{T}_{Ind}) and let $A \subseteq X$. Then, we have the following two cases:
 - $\mathbb{X} = A \Longrightarrow Int(A) = \mathbb{X}$.
 - $\mathbb{X} \neq A \Longrightarrow Int(A) = \emptyset$.
- 2. Consider the topological space (X, \mathcal{T}_{Disc}) and let $A \subseteq X$. Then, Int(A) = A.
- 3. For the topological space $(\mathbb{R}, |.|)$, we have:
 - $\forall x \in \mathbb{R}, \ Int\{x\} = \emptyset.$
 - $\bullet \ \forall x,y \in \mathbb{R}, \ Int([x,y]) = Int([x,y]) = Int((x,y]) = Int((x,y)) = (x,y).$
 - $Int(\mathbb{N}) = Int(\mathbb{Z}) = Int(\mathbb{Q}) = Int(\mathbb{C}_{\mathbb{R}}\mathbb{Q}) = \emptyset.$

4. If $X = \{x, y, z, t\}$ and $T = \{X, \emptyset, \{x\}, \{y\}, \{x, y\}\}\$, then we have:

- $Int\{z\} = Int\{t\} = \emptyset$.
- $Int\{x, z, t\} = \{x\}.$

Proposition 3.12. Int(A) is the largest open set contained in A.

Proof. We will show that Int(A) is the union of all open subsets of A. For every $x \in Int(A)$, we have $A \in \mathcal{N}(x)$ (see definition (3.12)). Using definition (3.1), we conclude that: for every $x \in Int(A)$, there exists $O_x \in \mathcal{T}$ such that $x \in O_x \subset A$, which leads to:

(i)
$$Int(A) \subset \bigcup_{x \in Int(A)} O_x \subset \bigcup_{x \in A} O_x.$$

Conversely, if $x \in \bigcup_{x \in A} O_x$ then $x \in O_x \subset A$, which implies $A \in \mathcal{N}(x)$, so $x \in Int(A)$. This means that:

(ii)
$$\bigcup_{x \in A} O_x \subset Int(A).$$

From (i) and (ii) we conclude that:

$$Int(A) = \bigcup_{x \in A} O_x.$$

Finally, Int(A) is the largest open set contained in A because it is the union of all open subsets of A.

Remark 3.7. The previous proposition allows us to write the following result:

(3.6)
$$A \text{ is open in } \mathbb{X} \iff A = Int(A).$$

Proposition 3.13. Let (X, T) be a topological space and A, B two subsets of X. Then, we have:

- 1. If $A \subset B$ and A is open, then $A \subset Int(B)$.
- 2. If $A \subset B$, then $Int(A) \subset Int(B)$.
- 3. Int(A) = Int(Int(A)).
- 4. $Int(A \cap B) = Int(A) \cap Int(B)$.

- 5. $Int(A) \cup Int(B) \subset Int(A \cup B)$.
- 6. $A \in \mathcal{N}(B) \iff B \subset Int(A)$.

Proof (Exercise).

Remark 3.8. We have $Int\left(\bigcap_{i\in I}A_i\right)\subset\bigcap_{i\in I}Int(A_i)$ if I is infinite.

3.5.2 Adherent points

Definition 3.13. Let (X, T) be a topological space, $A \subset X$, and $x \in X$. We say that x is an adherent point to A if and only if every $N \in \mathcal{N}(x)$ contains at least one point of A. In other words:

x is an adherent point of $A \iff \forall N \in \mathcal{N}(x), N \cap A \neq \emptyset$. (3.7)

The set of all adherent points to A is called the closure of A, and it is denoted by Cl(A)

Remark 3.9. It follows from this definition that $A \subseteq Cl(A)$.

Example

3.17.

- 1. If A is a subset of \mathbb{X} with the indiscrete topology \mathcal{T}_{Ind} , then $Cl(A) = \mathbb{X}$.
- 2. If A is a subset of X with the discrete topology \mathcal{T}_{Disc} , then Cl(A) = A.
- 3. Consider the topological space $(\mathbb{R}, |.|)$, then:
 - $\forall x \in \mathbb{R}, \ Cl(\{x\}) = \{x\}.$
 - $\forall x, y \in \mathbb{R}$, Cl([x,y]) = Cl([x,y]) = Cl((x,y]) = Cl((x,y)) = [x,y].
 - $Cl(\mathbb{Q}) = Cl(\mathbb{C}_{\mathbb{R}}\mathbb{Q}) = \mathbb{R}$, $Cl(\mathbb{N}) = \mathbb{N}$, $Cl(\mathbb{Z}) = \mathbb{Z}$.
- 4. If $X = \{x, y, z, t\}$ and $T = \{X, \emptyset, \{x\}, \{y\}, \{x, y\}\}\$, then for example:
 - $Cl(\{x\}) = \{x, z, t\}, \quad Cl(\{y\}) = \{y, z, t\}.$
 - $Cl(\{z\}) = \{z, t\}, \quad Cl(\{t\}) = \{z, t\}.$

Proposition 3.14. Cl(A) is the smallest closed set that contains A.

Proof. We will show that Cl(A) is the intersection of all closed sets that contain A. Let $F = \bigcap_{i \in I} F_i$, where F_i is a closed set that contains A for all $i \in I$.

• $\left(F \overset{?}{\subseteq} Cl(A)\right)$ Let $x \notin Cl(A)$. Then there exists an open set $O \in \mathcal{N}(x)$ such that $O \cap A = \emptyset$, which implies $A \subset \mathbb{C}_{\mathbb{X}}O$. Therefore, $\mathbb{C}_{\mathbb{X}}O$ is a closed set that contains A and $x \notin \mathbb{C}_{\mathbb{X}}O$ which leads to $x \notin F$. Thus, we have:

(i)
$$F \subseteq Cl(A)$$
.

• $\left(Cl(A) \stackrel{?}{\subseteq} F\right)$ Now, let $x \notin F$. Then $x \in \mathbb{C}_{\mathbb{X}}F$ (which is open), but $\mathbb{C}_{\mathbb{X}}F \cap A = \emptyset$, leading to $x \notin Cl(A)$. Thus, we have:

(ii)
$$Cl(A) \subseteq F$$
.

From (i) and (ii), we conclude that Cl(A) = F. Therefore, Cl(A) is the smallest closed set that contains A.

Remark 3.10. The previous proposition allows us to write the following result:

(3.8)
$$A \text{ is closed in } \mathbb{X} \iff A = Cl(A).$$

Proposition 3.15. Let A and B be two subsets of the topological space (X, T). Then, we have:

1.
$$A \subseteq B \Longrightarrow Cl(A) \subseteq Cl(B)$$
.

2.
$$Cl(A \cup B) = Cl(A) \cup Cl(B)$$
.

3.
$$Cl(A \cap B) \subset Cl(A) \cap Cl(B)$$
.

4.
$$C_{\mathbb{X}}Cl(A) = Int(C_{\mathbb{X}}A)$$
.

5.
$$Cl(\mathbb{C}_{\mathbb{X}}A) = \mathbb{C}_{\mathbb{X}}Int(A)$$
.

6.
$$Cl(Cl(A)) = Cl(A)$$
.

Proof . (Exercise).

Example 3.18. If A = (1,2) and B = (2,3), then $Cl(A \cap B) = \emptyset$. However, $Cl(A) \cap Cl(B) = [1,2] \cap [2,3] = \{2\}$. This example shows that, in general, the inclusion in (3) is not an equality.

3.5.3 Accumulation points

Definition 3.14. Let (X, \mathcal{T}) be a topological space, $A \subset X$, and $x \in X$. We say that x is an accumulation point of A if and only if every $N \in \mathcal{N}(x)$ contains at least one point of A other than x. In other words:

(3.9) $x \text{ is an accumulation point of } A \Longleftrightarrow \forall N \in \mathcal{N}(x), (N \setminus \{x\}) \cap A \neq \emptyset.$

The set of all accumulation points of A is called the derived set of A and is denoted by A'

It follows from this definition that any point adherent to A but not belonging to A is an accumulation point. Therefore, we have the following result:

$$(3.10) A' \cup A = Cl(A).$$

Example

3.19.

- 1. Let $X = \{x, y, z, t, s\}$, $T = \{\emptyset, X, \{x, y\}, \{z, t, s\}\}$, and $A = \{x, y, z\}$. Then, we have $A' = \{x, y, t, s\}$.
- 2. If A is a subset of a topological space (X, \mathcal{T}_{Disc}) , then $A' = \emptyset$.
- 3. In $(\mathbb{R}, |\cdot|)$, we have $\mathbb{N}' = \mathbb{Z}' = \emptyset$.

Proposition 3.16. A subset A of a topological space (X, T) is closed if and only if it contains all of its accumulation points.

Evident (from relation (3.10)).

3.5.4 Isolated Points

Definition 3.15. Let (X, T) be a topological space and $A \subset X$. We say that a point $x \in A$ is an isolated point if and only if there exists $N \in \mathcal{N}(x)$ such that N contains no other points of A except x. That is:

 $x \text{ is an isolated point in } A \Longleftrightarrow \exists N \in \mathcal{N}(x), \quad N \cap A = \{x\}.$

The set of all isolated points of A is denoted by Is(A).

Example

3.20.

- 1. In the topological space $(\mathbb{R}, |\cdot|)$, we have $Is(\mathbb{N}) = \mathbb{N}$ and $Is(\mathbb{Z}) = \mathbb{Z}$.
- 2. Every point in a topological space (X, \mathcal{T}_{Disc}) is isolated.
- 3. Let $\mathbb{X} = \{x, y, z, t, s\}, \ \mathcal{T} = \{\emptyset, \mathbb{X}, \{x\}, \{y\}, \{x, y\}\}, \ and \ A = \{y, z, t\}. \ Then, \ Is(A) = \{y\}.$

3.5.5Boundary points

Definition 3.16. Let (X, T) be a topological space, $A \subset X$, and $x \in X$. We say that x is a boundary point of A if it adheres to both A and $C_{\mathbb{X}}A$. In other words:

x is a boundary point of $A \iff x \in Cl(A) \cap Cl(\mathbb{C}_{\mathbb{X}}A)$.

The set of all boundary points of A is called the boundary of A and is denoted by $\partial(A)$.

Remark 3.11. Using property (5) of Proposition (3.15), we obtain:

(3.11)
$$\begin{aligned} \partial(A) &= Cl(A) \cap Cl(\mathbb{C}_{\mathbb{X}}A) \\ &= Cl(A) \cap \mathbb{C}_{\mathbb{X}}Int(A) \\ &= Cl(A) - Int(A). \end{aligned}$$

Proposition 3.17. Let A be a subset of a topological space (X, T). Then,

- 1. $\partial(A)$ is a closed set.
- 2. A is both open and closed $\iff \partial(A) = \emptyset$.
- 3. A is open $\iff \partial(A) \cap A = \emptyset$.
- 4. A is closed $\iff \partial(A) \subseteq A$.

Proof

(Exercise).

Example

3.21.

- 1. If A is a subset of a topological space (X, \mathcal{T}_{Disc}) , then $\partial(A) = \emptyset$.
- 2. In the space $(\mathbb{R}, |\cdot|)$:

- If A = (a,b), then $\partial(A) = Cl(A) Int(A) = [a,b] (a,b) = \{a,b\}$.
- If $A = \mathbb{Z}$, then $\partial(A) = Cl(A) Int(A) = \mathbb{Z} \emptyset = \mathbb{Z}$.

3.5.6 Exterior points

Definition 3.17. Let (X, T) be a topological space, $A \subset X$, and $x \in X$. We say that x is an exterior point of A if it belongs to the interior of C_XA . In other words:

x is an exterior point of $A \iff x \in Int(\mathbb{C}_{\mathbb{X}}A)$.

The set of all exterior points of A is called the exterior of A, and it is denoted by Ext(A)

Remark

3.12. Using property (4) from Proposition (3.15), we obtain the following result:

$$Ext(A) = Int(\mathbb{C}_{\mathbb{X}}A) = \mathbb{C}_{\mathbb{X}}Cl(A).$$

Proposition 3.18. Let A and B be two subsets of a topological space (X, T). Then,

- 1. Ext(A) is an open set.
- 2. $Ext(A) \subseteq C_{\mathbb{X}}A$.
- 3. $Ext(A) = Ext(\mathbf{C}_{\mathbb{X}}Ext(A))$.
- 4. $Ext(A \cup B) = Ext(A) \cap Ext(B)$.
- 5. $Cl(A) = \mathbb{X} \iff Ext(A) = \emptyset$.

(Exercise).

3.5.7 Dense sets

Definition 3.18. Let (X,T) be a topological space, and let A and B be two subsets of X. We say that A is dense in B if and only if every point of B is an adherent point of A, in other words:

(3.12)

A is dense in $B \iff B \subseteq Cl(A)$,

and we say that A is dense in \mathbb{X} if and only if $Cl(A) = \mathbb{X}$ or $Int(\mathbb{C}_{\mathbb{X}}A) = \emptyset$.

Example

3.22.

- 1. If X is equipped with the indiscrete topology, then every non-empty subset of X is dense in X.
- 2. If X is equipped with the discrete topology, and A and B are subsets of X such that $B \subset A$, then A is dense in B. Moreover, no subset $A \neq X$ is dense in X.
- 3. In $(\mathbb{R}, |\cdot|)$, let A = [a,b) and B = (a,b). It is clear that A is dense in B because $B \subseteq Cl(A) = [a,b]$.
- 4. We have seen that \mathbb{Q} is dense in \mathbb{R} since $Cl(\mathbb{Q}) = \mathbb{R}$.
- 5. Let $\mathbb{X} = \{x, y, z, t\}$ and $\mathcal{T} = \{\emptyset, \mathbb{X}, \{x\}, \{x, y\}\}$. Define $A = \{t\}$ and $B = \{x, z\}$; we find that B is dense in A because $A \subseteq Cl(B) = \mathbb{X}$, but A is not dense in B since $B \nsubseteq Cl(A) = \{z, t\}$.

Proposition 3.19. Let (X, T) be a topological space, and consider three subsets A, B, and C of X. If A is dense in B and B is dense in C; then, A is dense in C.

Proof . On the one hand, since A is dense in B, we have $B \subseteq Cl(A)$, which implies that

(i)
$$Cl(B) \subseteq Cl(A)$$
.

On the other hand, since B is dense in C, we have

(ii)
$$C \subseteq Cl(B)$$
.

From (i) and (ii), we conclude that $C \subseteq Cl(A)$, so A is dense in C.

Remark 3.13. The previous proposition shows that density is a transitive property.

The following property is a very practical characterization of dense subsets.

Proposition 3.20. Let (X, T) be a metric space, and let $A \subseteq X$. Then, A is dense in X if and only if every non-empty open set in X contains at least one element of A.

Proof

- \Longrightarrow) Suppose that A is a dense subset of $\mathbb X$ and O is a non-empty open set in $\mathbb X$. Since $Cl(A) = \mathbb X$, it follows that $O \subseteq Cl(A)$. Thus, $A \cap O \neq \emptyset$ because O is a neighborhood of each of its points.
- \Leftarrow Assume that $A \cap O \neq \emptyset$ for every open set O in \mathbb{X} . This implies that for any neighborhood N of any point $x \in \mathbb{X}$, we also have $N \cap A \neq \emptyset$, since N contains a non-empty open set. Therefore, $x \in Cl(A)$, and consequently, $Cl(A) = \mathbb{X}$.

3.6 Separated Spaces (Hausdorff Spaces))

Definition 3.19. A topological space (X, T) is said to be separated or Hausdorff if and only if, for any two distinct points x and y in X, there exist neighborhoods $N \in \mathcal{N}(x)$ and $W \in \mathcal{N}(y)$ such that $N \cap W = \emptyset$.

Example

3.23.

- 1. The space (X, \mathcal{T}_{Disc}) is separated.
- 2. If $\operatorname{card}(\mathbb{X}) \geq 2$, the space $(\mathbb{X}, \mathcal{T}_{Ind})$ is not separated.
- 3. The metric space $(\mathbb{R}, |.|)$ is Hausdorff.
- 4. The space (X, \mathcal{T}_{Cof}) is not separated.

Proposition 3.21. Let (X, \mathcal{T}) be a topological space. Then, X is separated if and only if for every $x \in X$, we have $\{x\} = \bigcap_{N_x \in \mathcal{N}(x)} N_x$, where N_x is a closed neighborhood of x.

Proof

 \Longrightarrow) Let \mathbb{X} be a separated topological space and $x \in \mathbb{X}$. We want to show that

(i)
$$\{x\} = \bigcap_{N_x \in \mathcal{N}(x)} N_x,$$

where N_x is a closed neighborhood of x. Suppose there exists $y \in \bigcap_{N_x \in \mathcal{N}(x)} N_x$ such that $y \neq x$. Then, there exist two open neighborhoods U and W of x and y, respectively, such that $U \cap W = \emptyset$. This means that $C_{\mathbb{X}}W$ is a closed neighborhood of x (since it contains U), which contradicts the fact that y belongs to all closed neighborhoods of x. \iff Conversely, let $x,y \in \mathbb{X}$ such that $x \neq y$. From the equality (i), it follows that there exists a closed neighborhood N_x of x that does not contain y. Therefore, there exists an open set O such that $x \in O \subset Cl(O) \subset N_x$, which implies that $y \notin Cl(O)$. Finally, we conclude that O and $C_{\mathbb{X}}Cl(O)$ are two disjoint open sets containing x and y, respectively, which shows that \mathbb{X} is a separated space.

Using the previous proposition, we obtain the following result:

Proposition 3.22. Every singleton in a separated space is closed, and in general, every finite set in a separated space is closed.

Proposition 3.23. Let (X, \mathcal{T}) be a separated topological space and $x \in X$. Then, x is an accumulation point of a subset A of X if and only if every neighborhood N_x of x contains infinitely many elements of A.

Proof

- \iff Obvious.
- \Longrightarrow) Suppose there exists a neighborhood $N_x \in \mathcal{N}(x)$ that contains a finite number of elements $\{x_1, x_2, \ldots, x_n\}$ of A. Then, $W = N_x \setminus \{x_1, x_2, \ldots, x_n\}$ is a neighborhood of x and $(W \setminus \{x\}) \cap A = \emptyset$. Therefore, x is not an accumulation point of A.

Remark 3.14. It follows from the previous proposition that any finite subset of a separated topological space has no accumulation points.

3.7 Induced topology, Product topology

3.7.1 Induced topology

Definition 3.20. Let (X, T) a topological space and A a subset of X. Then,

$$\mathcal{T}_A = \{ O_A = A \cap O : O \in \mathcal{T} \},$$

is a topology in A. The open sets in A are the intersections of open sets in \mathbb{X} with A. This topology is called the induced topology or relative topology of A in \mathbb{X} , and (A, \mathcal{T}) is

called a topological subspace of (X, T).

Exercise. Show that \mathcal{T}_A is a topology on A.

Example

3.24. Consider the following topology

$$\mathcal{T} = \{ \mathbb{X}, \emptyset, \{x\}, \{z, t\}, \{x, z, t\}, \{y, z, t, s\} \}$$

on $\mathbb{X} = \{x, y, z, t, e\}$ and the subset $A = \{x, t, s\}$ of \mathbb{X} . Then we have: $\mathbb{X} \cap A = A$, $\emptyset \cap A = \emptyset$, $\{x\} \cap A = \{x\}$, $\{z, t\} \cap A = \{t\}$, $\{x, z, t\} \cap A = \{x, t\}$, and $\{y, z, t, s\} \cap A = \{t, s\}$. Thus, the topology induced by \mathcal{T} on A is

$$\mathcal{T}_A = \{A, \emptyset, \{x\}, \{t\}, \{x, t\}, \{t, s\}\}.$$

Example 3.25. Consider the usual topology on \mathbb{R} and the induced topology \mathcal{T}_A on the closed interval A = [4,9]. Note that the half-open interval [4,6[is an open set in the topology \mathcal{T}_A because $[4,6[=]3,6[\cap A, where]3,6[$ is an open set in \mathbb{R} . Thus, we see that a set can be open relative to a subspace but neither open nor closed in the entire space.

Example 3.26. Consider the usual topology on \mathbb{R} and the induced topology \mathcal{T}_A on $A = \mathbb{N}$. Then, for any $n \in \mathbb{N}$, we have $\mathbb{N} \cap (n-1,n+1) = \{n\} \in \mathcal{T}_A$. We conclude that $(\mathbb{N}, \mathcal{T}_{\mathbb{N}} = \mathcal{P}(\mathbb{N}))$ is a discrete space.

Proposition 3.24. Let (A, \mathcal{T}_A) be a subspace of a topological space $(\mathbb{X}, \mathcal{T})$, and let F' be a subset of A. Then, F' is closed in A with respect to the induced topology \mathcal{T}_A if and only if there exists $F \in \mathcal{F}$ (where \mathcal{F} is the set of closed sets in \mathbb{X}) such that $F' = A \cap F$.

Proof We have that F' is closed in A if and only if $\mathcal{C}_A F'$ is open in A, i.e., if and only if there exists $O \in \mathcal{T}$ such that $\mathcal{C}_A F' = A \cap O$. Therefore, F' is closed in A if and only if there exists $O \in \mathcal{T}$ such that

$$F' = \mathbf{C}_A(\mathbf{C}_A F') = \mathbf{C}_A(A \cap O) = A \cap (\mathbf{C}_{\mathbb{X}} O),$$

i.e., if and only if there exists $F = \mathcal{C}_{\mathbb{X}}O \in \mathcal{F}$ such that $F' = A \cap F$.

We can easily show the following result.

Proposition 3.25. Let (A, \mathcal{T}_A) be a subspace of a topological space (X, \mathcal{T}) , and let B be a subset of A. If B is open (resp. closed) in X, then B is open (resp. closed) in A.

Proof

. It suffices to see that $B = B \cap A$.

Remark 3.15. The two examples (3.25) and (3.26) show that the converse of the previous result is not necessarily true.

Proposition 3.26. Let (A, \mathcal{T}_A) be a subspace of a topological space (X, \mathcal{T}) . Then every open (resp. closed) set in A is an open (resp. closed) set in X if and only if A is an open (resp. closed) set in X.

Proof

- \Longrightarrow) Suppose that every open set in A is an open set in X, then A is an open set in X.
- \iff Suppose that A is an open set in \mathbb{X} and let O_A be an open set in A. Then there exists $O \in \mathcal{T}$ such that $O_A = A \cap O$, which is an open set in \mathbb{X} since $A \in \mathcal{T}$. By similar arguments, this result can be shown for closed sets.

Proposition 3.27. 1. If $x \in A$, then N' is a neighborhood of x in A if and only if there exists $N \in \mathcal{N}(x)$ such that $N' = N \cap A$.

- 2. If S(x) is a neighborhood base of x in X, then $\{N \cap A : N \in S(x)\}$ is neighborhood base of x in A for the induced topology T_A .
- 3. If B is a subset of A, then we have:
 - **a)** $Cl(B)_A = A \cap Cl(B)$ (where $Cl(B)_A$ and Cl(B) are the closures of B for \mathcal{T}_A and \mathcal{T} , respectively).
 - **b**) $Cl(B)_A = Cl(B) \iff A \text{ is closed in } \mathbb{X}.$
 - c) $A \cap Int(B) \subset Int(B)_A$
- 4. If \mathfrak{B} is a base for $(\mathbb{X}, \mathcal{T})$, then $\mathfrak{B}_A = \{\beta \cap A : \beta \in \mathfrak{B}\}\$ is a base for (A, \mathcal{T}_A) .

Proof

1. If N' is a neighborhood of x in A, then there exists an open set $A \cap O \in \mathcal{T}_A$ (i.e., there exists $O \in \mathcal{T}$) such that $x \in A \cap O \subset N'$. Thus, if we define $N = O \cup N'$, we obtain $x \in O \subset N$, so N is a neighborhood of x in \mathbb{X} , and we have:

$$N \cap A = (O \cup N') \cap A = (O \cap A) \cup (N' \cap A) = (O \cap A) \cup N' = N'.$$

Conversely, if $N \in \mathcal{N}(x)$, then there exists $O \in \mathcal{T}$ such that $x \in O \subset N$. Thus, $x \in A \cap O \subset A \cap N$, and therefore $N' = A \cap N$ is a neighborhood of x in A because $A \cap O$ is open in A.

- 2. Let $N' = N \cap A$ be a neighborhood of x in A for the induced topology \mathcal{T}_A , with N being a neighborhood of x in \mathbb{X} . If $\mathcal{S}(x)$ is a neighborhood base of x in \mathbb{X} , then there exists $W \in \mathcal{S}(x)$ such that $W \subset N$, so $W \cap A \subset N'$. This leads to the conclusion that $\{N \cap A : N \in \mathcal{S}(x)\}$ is neighborhood base of x in A.
- 3. a) If $x \in Cl(B)_A$, then for every $N \in \mathcal{N}(x)$ (for the topology \mathcal{T}), we have $(N \cap A) \cap B \neq \emptyset$, and therefore $x \in A$ and $x \in Cl(B)$, from which we obtain

(i)
$$x \in A \cap Cl(B)$$
.

On the other hand, if $x \in A \cap Cl(B)$, then every neighborhood $N \cap A$ of x in A intersects B because N intersects B and $B \subset A$, from which we obtain

(ii)
$$x \in Cl(B)_A$$
.

Finally, from (i) and (ii), we conclude that $Cl(B)_A = A \cap Cl(B)$.

- b) Suppose that for every subset B of A, we have Cl(B)_A = Cl(B), then A = Cl(A)_A = Cl(A) because A is closed in A, hence A is closed in X.
 Conversely, if A is closed in X, then Cl(B) ⊂ Cl(A) = A, and thus Cl(B)_A = A ∩ Cl(B) = Cl(B).
- c) We have $A \cap Int(B)$ is an open set in A contained in B, so $A \cap Int(B) \subset Int(B)_A$.
- 4. Let U be an open set of A, then there exists $O \in \mathcal{T}$ such that $U = A \cap O$, but $O = \bigcup_{i \in I} \beta_i$, where $\beta_i \in \mathfrak{B}$ for all $i \in I$, from which we obtain

$$U = A \cap \left(\bigcup_{i \in I} \beta_i\right) = \bigcup_{i \in I} (A \cap \beta_i),$$

which completes the proof.

Definition 3.21. A topological property is hereditary if whenever a topological space possesses this property, it also holds for each of its sub-spaces.

Proposition 3.28. Every subspace of a separated space is separated.

Proof Let (A, \mathcal{T}_A) be a topological subspace of a separated topological space $(\mathbb{X}, \mathcal{T})$, and let $x, y \in A$ such that $x \neq y$. Since \mathbb{X} is separated, there exist neighborhoods $N \in \mathcal{N}(x)$ and $W \in \mathcal{N}(y)$ such that $N \cap W = \emptyset$, hence $(A \cap N) \cap (A \cap W) = \emptyset$. Therefore, $(A \cap N)$ and $(A \cap W)$ are disjoint neighborhoods of x and y, respectively, within A, which shows that A is separated.

The following result shows the transitivity of the induced topology.

Proposition 3.29. Let (X, T) be a topological space and $B \subset A \subset X$ two subsets of X. We denote by T'_B the topology induced on B by T_A . Then, we have

$$\mathcal{T}_B = \mathcal{T}_B'$$
.

Proof If $U \in \mathcal{T}_B$, then there exists $O \in \mathcal{T}$ such that $U = B \cap O$, and since $A \cap O \in \mathcal{T}_A$, we obtain $U = B \cap O = B \cap (A \cap O) \in \mathcal{T}'_B$.

Conversely, if $U \in \mathcal{T}'_B$, then there exists $O_A \in \mathcal{T}_A$ such that $U = B \cap O_A$, and since $O_A \in \mathcal{T}_A$, there exists $O \in \mathcal{T}$ such that $O_A = A \cap O$. Thus, $U = B \cap (A \cap O) = B \cap O$, and therefore $U \in \mathcal{T}_B$.

3.7.2 Product topology

Definition 3.22. Let $\{(X_i, \mathcal{T}_i) : i = 1, ..., n\}$ be a collection of topological spaces. The box topology or product topology on the product $X = \prod_{i=1}^{n} X_i$ is the topology with basis

$$\mathcal{B} = \left\{ \prod_{i=1}^{n} O_i : O_i \in \mathcal{T}_i \text{ for each } 1 \leqslant i \leqslant n \right\}.$$

So we can always make the product of topological space into a topological space using the box topology.

Proof

- 1. We have $\mathbb{X} = \mathbb{X}_1 \times \mathbb{X}_2 \times \cdots \times \mathbb{X}_n \in \mathcal{T}$ and $\underbrace{\emptyset \times \emptyset \times \cdots \times \emptyset}_{n \text{ times}} \in \mathcal{T}$ because they are elements of \mathcal{B} .
- 2. If $\{O_i : i \in I\}$ is a family of open subsets of X, then we have:

$$\bigcup_{i \in I} O_i = \bigcup_{i \in I} \left(\bigcup_{j \in J} \left(O_{i,j}^1 \times O_{i,j}^2 \times \cdots \times O_{i,j}^n \right) \right) = \bigcup_{(i,j) \in I \times J} \left(O_{i,j}^1 \times O_{i,j}^2 \times \cdots \times O_{i,j}^n \right) \in \mathcal{T},$$

because $O_{i,j}^1 \times O_{i,j}^2 \times \cdots \times O_{i,j}^n \in \mathcal{B}$ for all $i \in I$ and $j \in J$.

3. It suffices to show that if $O_1, O_2 \in \mathcal{T}$, then $O_1 \cap O_2 \in \mathcal{T}$. Since $O_1, O_2 \in \mathcal{T}$, we have $O_1 = \bigcup_{i \in I} N_i$ and $O_2 = \bigcup_{j \in J} W_j$ where N_i , $W_j \in \mathcal{B}$ for all $i \in I$ and $j \in J$. Therefore, we obtain:

$$O_1 \cap O_2 = \left(\bigcup_{i \in I} N_i \right) \cap \left(\bigcup_{j \in J} W_j \right) = \bigcup_{(i,j) \in I \times J} \left(N_i \cap W_j \right).$$

It remains to show that $N_i \cap W_j \in \mathcal{B}$ for all $i \in I$ and $j \in J$. By definition, we have $N_i = R_1^i \times \cdots \times R_n^i$ and $W_j = K_1^j \times \cdots \times K_n^j$ where $R_\alpha^i \in \mathcal{T}_\alpha$ and $K_\alpha^j \in \mathcal{T}_\alpha$ for all $\alpha = 1, \dots, n$. This allows us to write:

$$N_i \cap W_j = (R_1^i \cap K_1^j) \times (R_2^i \cap K_2^j) \times \dots \times (R_n^i \cap K_n^j).$$

Since $R_{\alpha}^{i} \cap K_{\alpha}^{j}$ are open sets in \mathcal{T}_{α} for all $\alpha = 1, ..., n$, we deduce that $N_{i} \cap W_{j} \in \mathcal{B}$ for all $i \in I$ and $j \in J$, which implies that $O_{1} \cap O_{2} \in \mathcal{T}$. Finally, we conclude that \mathcal{T} is a topology on X.

Example 3.27

1. The box topology or product topology on \mathbb{R}^n , such that \mathbb{R} is equipped with the usual topology, is the topology with basis

$$\mathcal{B} = \left\{ \prod_{i=1}^{n} \left[a_i, b_i \right] : \ a_i, b_i \in \mathbb{R} \ for \ each \ 1 \leqslant i \leqslant n \right\}.$$

2. Let $\{(X_i, \mathcal{T}_i) : i = 1, ..., n\}$ be a family of indiscrete spaces. Then, the product $X = \prod_{i=1}^n X_i$ is an indiscrete space. Indeed, if $O = \prod_{i=1}^n O_i \neq X$, then there exists an index i_0 such that $O_{i_0} \neq X_{i_0}$. Since $\mathcal{T}_{i_0} = \{X_{i_0}, \emptyset\}$, we obtain $O_{i_0} = \emptyset$, and hence $O = \emptyset$. Therefore, the family $\{X,\emptyset\}$ forms a basis for the product topology on X, which shows that X is an indiscrete space.

Proposition 3.30. Let $\mathbb{X} = \prod_{i=1}^{n} \mathbb{X}_i$ be a product of topological spaces, and let x = $(x_1,\ldots,x_n)\in\mathbb{X}$. Let \mathcal{S} denote the family of sets of the form $N_1\times\cdots\times N_n$, where $N_i \in \mathcal{N}(x_i)$ in X_i for i = 1, ..., n. Then, S is a basic neighborhoods of x in X.

Proof

If $N_i \in \mathcal{N}(x_i)$, then there exists $O_i \in \mathcal{T}_i$, for all i = 1, ..., n, such that $x_i \in O_i \subset V_i$. Therefore, we obtain $x \in O_1 \times \cdots \times O_n \subset N_1 \times \cdots \times N_n$, and since $O_1 \times \cdots \times O_n$ is an open set in \mathbb{X} , we conclude that $N_1 \times \cdots \times N_n$ is a neighborhood of x in \mathbb{X} .

Now, let $N \in \mathcal{N}(x)$ in \mathbb{X} . Then, there exists an open set $O \subset \mathbb{X}$ such that $x \in O \subset \mathbb{N}$. Thus, there exists $W = O_1 \times \cdots \times O_n$ an open set containing x (since \mathcal{B} is a basis for the product topology on \mathbb{X} (see Definition 3.22)). Hence, $W \in \mathcal{S}$ because $O_i \in \mathcal{N}(x_i)$ for all i = 1, ..., n, which implies that $W \subset N$.

3.28. Let \mathbb{R}^n be equipped with the usual topology, and let $x = (x_1, \dots, x_n) \in \mathbb{R}^n$.

The family

$$\left\{ \prod_{i=1}^{n} (x_i - \varepsilon_i, x_i + \varepsilon_i) : (\varepsilon_1, \dots, \varepsilon_n) \in (\mathbb{R}_+^*)^n \right\},\,$$

is a basic neighborhoods of x. Similarly, the family

$$\left\{ \prod_{i=1}^{n} (x_i - \varepsilon, x_i + \varepsilon) : \varepsilon \in \mathbb{R}_+^* \right\},\,$$

is also a basic neighborhoods of x.

Proposition 3.31. Consider $A = \prod_{i=1}^{n} A_i$, a subset of the product space $\mathbb{X} = \prod_{i=1}^{n} \mathbb{X}_i$. The closure of A, denoted by Cl(A), is given by:

$$Cl(A) = \prod_{i=1}^{n} Cl(A_i).$$

Proof Let $x = (x_1, ..., x_n) \in Cl(A)$. Then, for every $N_i \in \mathcal{N}(x_i)$, we have:

$$(N_1 \cap A_1) \times \cdots \times (N_n \cap A_n) = (N_1 \times \cdots \times N_n) \cap A \neq \emptyset,$$

which implies $N_i \cap A_i \neq \emptyset$ for all i = 1, ..., n. Thus, $x_i \in Cl(A_i)$ for all i = 1, ..., n, showing that $x \in \prod_{i=1}^{n} Cl(A_i).$

Conversely, if $x \in \prod_{i=1}^{n} Cl(A_i)$, then for every $N_i \in \mathcal{N}(x_i)$, i = 1, ..., n, we have $N_i \cap A_i \neq \emptyset$. Therefore,

$$(N_1 \cap A_1) \times \cdots \times (N_n \cap A_n) = (V_1 \times \cdots \times N_n) \cap A \neq \emptyset$$

which shows that $x \in Cl(A)$.

Using the previous proposition, we obtain the following result.

Proposition 3.32. Let $A = \prod_{i=1}^{n} A_i$ be a subset of a product space $\mathbb{X} = \prod_{i=1}^{n} \mathbb{X}_i$. Then A is closed in \mathbb{X} if and only if A_i is closed in \mathbb{X}_i for every i = 1, ..., n.

Proposition 3.33. A product space $\mathbb{X} = \prod_{i=1}^{n} \mathbb{X}_{i}$ is Hausdorff if and only if each \mathbb{X}_{i} is Hausdorff for every i = 1, ..., n.

Proof

 $\Longrightarrow) Suppose that <math>\mathbb{X} = \prod_{i=1}^{n} \mathbb{X}_{i} \text{ is Hausdorff, and let } x_{i_{0}}, y_{i_{0}} \in \mathbb{X}_{i_{0}} \text{ such that } x_{i_{0}} \neq y_{i_{0}}. \text{ For any } x' = (x_{1}, ..., x_{i_{0}-1}, x_{i_{0}+1}, ..., x_{n}) \in \prod_{\substack{i=1\\i\neq i_{0}}}^{n} \mathbb{X}_{i}, \text{ there exists a neighborhood } O \text{ of } (x_{1}, ..., x_{i_{0}}, ..., x_{n})$ and a neighborhood O' of $(x_{1}, ..., y_{i_{0}}, ..., x_{n})$ such that $O \cap O' = \emptyset$. Let $O = N_{1} \times N_{2}$ and $O' = N'_{1} \times N'_{2}$, where $N_{1} \in \mathcal{N}(x_{i_{0}}), N_{2} \in \mathcal{N}(x'), N'_{1} \in \mathcal{N}(y_{i_{0}}), \text{ and } N'_{2} \in \mathcal{N}(x'). \text{ Thus, we obtain:}$

$$O \cap O' = (N_1 \cap N_1') \times (N_2 \cap N_2') = \emptyset \Longrightarrow N_1 \cap N_1' = \emptyset,$$

and therefore X_{i_0} is Hausdorff.

 $\longleftarrow \text{ Let } x = (x_1, \dots, x_n), \ y = (y_1, \dots, y_n) \in \mathbb{X} = \prod_{i=1}^n \mathbb{X}_i \text{ such that } x \neq y. \text{ Then there exists at least one } i_0 \in \{1, \dots, n\} \text{ such that } x_{i_0} \neq y_{i_0}. \text{ Since } \mathbb{X}_{i_0} \text{ is Hausdorff, there exist a neighborhood } N \text{ of } x_{i_0} \text{ and a neighborhood } W \text{ of } y_{i_0} \text{ such that } V \cap W = \emptyset. \text{ By setting } O_x = \mathbb{X}_1 \times \dots \times \mathbb{X}_{i_0-1} \times N \times \mathbb{X}_{i_0+1} \times \dots \times \mathbb{X}_n \text{ and } O_y = \mathbb{X}_1 \times \dots \times \mathbb{X}_{i_0-1} \times W \times \mathbb{X}_{i_0+1} \times \dots \times \mathbb{X}_n, \text{ we obtain } O_x \in \mathcal{N}(x), \ O_y \in \mathcal{N}(y), \ \text{and } O_x \cap O_y = \emptyset, \ \text{which shows that } \mathbb{X} \text{ is Hausdorff.}$

3.8 Convergent sequences

Definition 3.23. A "sequence of elements" of a set X is defined as any function from \mathbb{N} (or a subset of \mathbb{N}) into X, which associates with each integer n in \mathbb{N} an element of X denoted by x_n . The sequence with general term x_n is denoted by $(x_n)_{n \in \mathbb{N}}$.

Definition 3.24. Let (X, T) be a topological space. Consider a sequence $(x_n)_{n \in \mathbb{N}}$ of elements in X and a point $l \in X$. We say that l is the limit of the sequence $(x_n)_{n \in \mathbb{N}}$ (or that $(x_n)_{n \in \mathbb{N}}$ converges to l) as n tends to infinity, if for every neighborhood N of l in X, there exists an integer n_0 such that $x_n \in N$ for all $n \geq n_0$. In other words,

$$\forall N \in \mathcal{N}(l), \exists n_0 \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant n_0 \Rightarrow x_n \in N.$$

In this case, we write:

$$\lim_{n \to \infty} x_n = l.$$

A sequence that does not converge is called divergent.

Example

3.29.

- 1. Every constant sequence is convergent in all topological spaces.
- 2. A sequence in an indiscrete space is convergent to every point of that space.
- 3. If (X, \mathcal{T}) is a discrete space, then a sequence $(x_n)_{n\in\mathbb{N}}$ in X converges to l if and only if there exists n_0 such that $x_n = l$ for all $n \ge n_0$.
- 4. The sequence (x_n) of the general term $x_n = \frac{1}{n}$ is convergent to 0 in $(\mathbb{R}, |\cdot|)$, and it is divergent in $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$.

Proposition 3.34. If (X, T) is a Hausdorff topological space, then every convergent sequence in X has a unique limit.

Proof Let us reason by contradiction. Let (x_n) be a convergent sequence in \mathbb{X} . Suppose it has two distinct limits $l_1 \neq l_2$. Since $(\mathbb{X}, \mathcal{T})$ is a Hausdorff space, there exist neighborhoods $N_1 \in \mathcal{N}(l_1)$ and $N_2 \in \mathcal{N}(l_2)$ such that $N_1 \cap N_2 = \emptyset$. According to the definition (3.24), there exist integers n_1 and n_2 such that:

$$\forall n \geqslant n_1, x_n \in N_1 \quad and \quad \forall n \geqslant n_2, x_n \in N_2.$$

Let $n_0 = \max(n_1, n_2)$. Then, for all $n \ge n_0$, we have

$$x_n \in N_1 \cap N_2$$
,

which contradicts the fact that $N_1 \cap N_2 = \emptyset$. Therefore, $l_1 = l_2$.

Example 3.30. The trivial topology (indiscrete topology) on a set X is a non-Hausdorff topology because every element $x \in X$ has only one neighborhood, namely X itself. Therefore, if $(x_n)_{n \in \mathbb{N}}$ is a sequence in X, every point $x \in X$ is a limit for this sequence. Hence, the limit is not unique.

Definition 3.25. A cluster point or accumulation point of a sequence $(x_n)_{n\in\mathbb{N}}$ in a topological space (\mathbb{X},\mathcal{T}) is a point x such that, for every neighborhood N of x, there are infinitely many natural numbers n such that $x_n \in N$.

Remark 3.16. According to the previous definition, we conclude that the limit of a sequence is an accumulation (cluster point) point of this sequence.

Example 3.31.

- 1. In $(\mathbb{R}, |.|)$, x = 1 is the unique accumulation point (cluster point) of the sequence $(x_n)_{n \in \mathbb{N}} = (1 + e^{-n})_{n \in \mathbb{N}}$, and this value is the limit of the sequence. Moreover, $x_n = 1 + e^{-n}$ is an adherent point for every $n \in \mathbb{N}$, but it is not an accumulation point (cluster point).
- 2. In $(\mathbb{R}, |.|)$, the sequence $(x_n)_{n \in \mathbb{N}} = ((-1)^n)_{n \in \mathbb{N}}$ has two accumulation points (cluster points), -1 and 1, but it is a divergent sequence.

According to the previous example and the definition (3.25), we conclude that every accumulation point is an adherent point, but the converse is not true.

Proposition 3.35. If (X,T) is a Hausdorff (separated) topological space, then every convergent sequence in X has a unique accumulation point (cluster points), which is its limit.

Proof By arguments similar to those used in the proof of the previous proposition.

Remark 3.17.

- 1. A sequence that has at least two accumulation points diverges.
- 2. The converse of the previous proposition is false. For example, the sequence defined by $x_n = (1 - (-1)^n) \times n$ has only 0 as an accumulation point but diverges.

Definition 3.26. Let (x_n) be a sequence in a topological space (X, \mathcal{T}) . We call a subsequence or extracted sequence of (x_n) any sequence of the form $(x_{\phi(n)})$, where $\phi(n)$ is a strictly increasing function from \mathbb{N} to \mathbb{N} .

Example **3.32.** If (x_n) is a sequence in a topological space (X, T) and $\phi(n) = 2n + 1$, then $(x_{2n+1}) = \{x_1, x_3, x_5, x_7, \dots, x_{2n+1}, \dots\}$ is a subsequence of (x_n) .

Using the definitions (3.24) and (3.25), we obtain the following two results.

Proposition 3.36.

- 1. Every subsequence of a convergent sequence is convergent (towards the same limit).
- 2. The limit of a subsequence extracted from a sequence (x_n) is a cluster point of this sequence.

Proposition 3.37. Let $(z_n) = \{z_n^1, z_n^2, \dots, z_n^k\}$ be a sequence in a space $\mathbb{X} = \prod_{i=1}^k \mathbb{X}_i$. Then, (z_n) converges to $z=(z^1,z^2,\ldots,z^k)$ if and only if for all $i=1,\ldots,k$, the sequence (z_n^i) converges in \mathbb{X} to z^i .

Proof

 \implies) Suppose that $(z_n) = \{z_n^1, z_n^2, \dots, z_n^k\}$ converges in \mathbb{X} to $z = (z^1, z^2, \dots, z^k)$. Let N_i be a neighborhood of z_i in \mathbb{X}_i , for $i=1,\ldots,k$. Then, $W=\mathbb{X}_1\times\cdots\times\mathbb{X}_{i-1}\times N_i\times\mathbb{X}_{i+1}\times\cdots\times\mathbb{X}_k$ is a neighborhood of z, so there exists $n_0 \in \mathbb{N}$ such that

$$n \geqslant n_0 \Longrightarrow z_n \in W$$
.

Consequently, we obtain:

$$n \geqslant n_0 \Longrightarrow z_n^i \in N_i$$

which shows that for all i = 1, ..., k, the sequence (z_n^i) converges to z^i in \mathbb{X}_i .

 \iff Suppose that for all $i=1,\ldots,k$, the sequence (z_n^i) converges to z^i in \mathbb{X}_i . Let W be a neighborhood of $z=(z^1,z^2,\ldots,z^k)$ in $\mathbb{X}=\prod\limits_{i=1}^k\mathbb{X}_i$. According to proposition (3.30), W contains a neighborhood of the form $N_1\times\cdots\times N_k$, where N_i is a neighborhood of z^i in \mathbb{X}_i for all $i=1,\ldots,k$. Thus, for all $i=1,\ldots,k$, and for all $N_i\in\mathcal{N}(z^i)$, there exists n_0^i such that:

$$n \geqslant n_0^i \Longrightarrow z_n^i \in N_i$$
.

If we set $n_0 = \max(n_0^1, \dots, n_0^k)$, we obtain:

$$n \geqslant n_0 \Longrightarrow z_n \in N_1 \times \cdots \times N_k,$$

which leads to:

$$n \geqslant n_0 \Longrightarrow z_n \in W.$$

Therefore, z_n is a sequence converging to z in X.

Proposition 3.38. If $x = (x^1, ..., x^k)$ is a cluster point of (z_n) in $\mathbb{X} = \prod_{i=1}^k \mathbb{X}_i$, then x^i is a cluster point of (z_n^i) for all i = 1, ..., k.

Proof Let $N_i \in \mathcal{N}(x^i)$ for all i = 1, ..., k, then $W = \mathbb{X}_1 \times \cdots \times \mathbb{X}_{i-1} \times N_i \times \mathbb{X}_{i+1} \times \cdots \times \mathbb{X}_k$ is a neighborhood of x in \mathbb{X} . Consequently, we obtain:

$$card\{n \in \mathbb{N} : z_n \in W\} = +\infty,$$

which leads to:

$$card\{n \in \mathbb{N} : z_n^i \in N_i\} = +\infty,$$

from which it follows that x^i is a cluster point of (z_n^i) for all i = 1, ..., k.

The previous result is generally false. For example, in \mathbb{R}^2 , if we take the sequence $z_n = (x_n, y_n)$ defined by the following relations:

$$\begin{cases} x_{2n} = n \\ x_{2n+1} = \frac{1}{n} \end{cases}, \begin{cases} y_{2n} = \frac{1}{n} \\ y_{2n+1} = n \end{cases}$$

It is clear that 0 is a cluster point of (x_n) and (y_n) , but (0,0) is not a cluster point of (z_n) .

3.9 Continuous applications

Definition 3.27 (Pointwise continuity). Let $(\mathbb{X}, \mathcal{T}_{\mathbb{X}})$ and $(\mathbb{Y}, \mathcal{T}_{\mathbb{Y}})$ be two topological spaces. We say that a function $f: \mathbb{X} \longrightarrow \mathbb{Y}$ is continuous at $x_0 \in \mathbb{X}$ if and only if for every neighborhood $N \in \mathcal{N}_{\mathbb{Y}}(f(x_0))$, there exists $U \in \mathcal{N}_{\mathbb{X}}(x_0)$ such that $f(U) \subseteq N$. In other words,

$$(3.14) \forall N \in \mathcal{N}_{\mathbb{Y}}(f(x_0)), \exists U \in \mathcal{N}_{\mathbb{X}}(x_0), \ f(U) \subseteq N \iff f \ is \ continuous \ at \ x_0.$$

Using the preimage, we obtain $U \subseteq f^{-1}(N)$, hence $f^{-1}(N)$ is a neighborhood of x_0 . Therefore, we can write the previous definition in the following form.

Definition 3.28. Let $(\mathbb{X}, \mathcal{T}_{\mathbb{X}})$ and $(\mathbb{Y}, \mathcal{T}_{\mathbb{Y}})$ be two topological spaces. We say that a function $f: \mathbb{X} \longrightarrow \mathbb{Y}$ is continuous at $x_0 \in \mathbb{X}$ if and only if the preimage of any neighborhood of $f(x_0)$ in \mathbb{Y} is a neighborhood of x_0 in \mathbb{X} . In other words,

$$(3.15) \qquad \forall N \in \mathcal{N}_{\mathbb{Y}}(f(x_0)), \ f^{-1}(N) \in \mathcal{N}_{\mathbb{X}}(x_0)$$

Remark 3.18. In both previous definitions, we can replace $\mathcal{N}_{\mathbb{X}}(x_0)$ and $\mathcal{N}_{\mathbb{Y}}(f(x_0))$ with the basic neighborhoods of x_0 and $f(x_0)$.

Example

3.33.

- 1. The function $f:(\mathbb{R},|.|) \longrightarrow (\mathbb{R},\mathcal{P}(\mathbb{R}))$ such that for all $x \in \mathbb{R}$, f(x) = x, is not continuous on \mathbb{R} , because $N = \{x\}$ is a neighborhood of x in $(\mathbb{R},\mathcal{P}(\mathbb{R}))$, but $f^{-1}(N) = \{x\}$ is not a neighborhood of x in $(\mathbb{R},|.|)$.
- 2. Let $\mathbb{X} = \{x_1, x_2, x_3, x_4\}$ and $\mathcal{T}_{\mathbb{X}} = \{\emptyset, \mathbb{X}, \{x_1\}, \{x_2\}, \{x_1, x_2\}, \{x_2, x_3, x_4\}\}$, and let $\mathbb{Y} = \{y_1, y_2, y_3, y_4\}$ and $\mathcal{T}_{\mathbb{Y}} = \{\emptyset, \mathbb{Y}, \{y_1\}, \{y_1, y_2\}, \{y_1, y_2, y_3\}\}$. We define the function $f : \mathbb{X} \longrightarrow \mathbb{Y}$ by $f(x_4) = y_4$, $f(x_3) = y_2$, and $f(x_1) = f(x_2) = y_1$.
 - For example, we have $\mathcal{N}_{\mathbb{Y}}(f(x_4)) = \mathcal{N}_{\mathbb{Y}}(y_4) = \{\mathbb{Y}\}$, and $f^{-1}(\mathbb{Y}) = \mathbb{X} \in \mathcal{N}_{\mathbb{X}}(x_4)$, so f is continuous at x_4 .
 - We also have $\mathcal{N}_{\mathbb{Y}}(y_2) = \{\{y_1, y_2\}, \{y_1, y_2, y_3\}, \{y_1, y_2, y_4\}, \mathbb{Y}\}$. If we take $N = \{y_1, y_2\}$, we obtain $f^{-1}(N) = \{x_1, x_2, x_3\} \notin \mathcal{N}_{\mathbb{X}}(x_3)$, so f is not continuous at x_3 .

Proposition 3.39 (Transitivity of continuity). Let \mathbb{X}, \mathbb{Y} and \mathbb{T} be three topological spaces. Consider the two functions $f: \mathbb{X} \longrightarrow \mathbb{Y}$ and $g: \mathbb{Y} \longrightarrow \mathbb{T}$. If f is continuous at a point $x_0 \in \mathbb{X}$ and g is continuous at $f(x_0)$, then $g \circ f$ is continuous at x_0 .

Proof Let $W \in \mathcal{N}_{\mathbb{T}}(g \circ f(x_0))$. Since g is continuous at $f(x_0)$, there exists $N \in \mathcal{N}_{\mathbb{Y}}(f(x_0))$ such that $g(N) \subseteq W$, and since f is continuous at x_0 , there exists $U \in \mathcal{N}_{\mathbb{X}}(x_0)$ such that $f(U) \subseteq N$. From this, we deduce that $g \circ f(U) \subseteq W$, which implies that $g \circ f$ is continuous at x_0 .

Remark 3.19. The converse in the previous proposition is not always true.

Consider the function f as shown in example (3.33(2)) and let $g: (\mathbb{Y}, \mathcal{T}_{\mathbb{Y}}) \longrightarrow (\mathbb{X}, \mathcal{T}_{\mathbb{X}})$ be a function defined as follows: $g(y_4) = x_4$, $g(y_3) = x_1$, $g(y_2) = x_3$, $g(y_1) = x_2$. On one hand, we have $\mathcal{N}_{\mathbb{X}}(g(f(x_4))) = \mathcal{N}_{\mathbb{X}}(g(y_4)) = \mathcal{N}_{\mathbb{X}}(x_4) = \{\{x_2, x_3, x_4\}, \mathbb{X}\}$. But, $g^{-1}(\{x_2, x_3, x_4\}) = \{y_1, y_2, y_4\} \notin \mathcal{N}_{\mathbb{Y}}(y_4)$, which means that g is not continuous at $f(x_4) = y_4$. On the other hand, we have $(g \circ f)(x_4) = g(f(x_4)) = g(y_4) = x_4$ and $\mathcal{N}_{\mathbb{X}}(x_4) = \{\{x_2, x_3, x_4\}, \mathbb{X}\}$, and $(g \circ f)^{-1}(\{x_2, x_3, x_4\}) = f^{-1}(g^{-1}(\{x_2, x_3, x_4\})) = f^{-1}(\{y_1, y_2, y_4\}) = \mathbb{X} \in \mathcal{N}_{\mathbb{X}}(x_4)$. Since $(g \circ f)^{-1}(\mathbb{X}) = \mathbb{X}$, we conclude that $g \circ f$ is continuous at x_4 .

Proposition 3.40. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be two topological spaces and $f : X \longrightarrow Y$. The following statements are equivalent.

- 1. f is continuous.
- 2. $f(Cl(A)) \subseteq Cl(f(A))$ for every subset A of X.
- 3. $f^{-1}(F)$ is closed in \mathbb{X} for every closed set F in \mathbb{Y} .
- 4. $f^{-1}(O)$ is open in \mathbb{X} for every open set O in \mathbb{Y} .
- 5. $f^{-1}(\beta)$ is open in \mathbb{X} for every element β of a basis \mathfrak{B} of $\mathcal{T}_{\mathbb{Y}}$.
- 6. $f^{-1}(IntB) \subseteq Intf^{-1}(B)$ for every subset B of \mathbb{Y} .
- 7. $Cl(f^{-1}(B)) \subseteq f^{-1}(Cl(B))$ for every subset B of \mathbb{Y} .

Proof

- (1) \Longrightarrow (2) Let $a \in Cl(A)$ and $N \in \mathcal{N}_{\mathbb{Y}}(f(a))$. Then $f^{-1}(N) \in \mathcal{N}_{\mathbb{X}}(a)$ because f is continuous. Consequently, $f^{-1}(N) \cap A \neq \emptyset$. Thus, if $x \in f^{-1}(N) \cap A$, we obtain $f(x) \in N \cap f(A)$, i.e., $N \cap f(A) \neq \emptyset$. Therefore, $f(a) \in Cl(f(A))$, which shows that $f(Cl(A)) \subset Cl(f(A))$.
- (2) \Longrightarrow (3) Let F be a closed subset of \mathbb{Y} . Define $A = f^{-1}(F)$, so it is sufficient to show

that A = Cl(A). By definition, we have $A \subseteq Cl(A)$, and according to (2), we have $f(Cl(A)) \subseteq Cl(f(A)) \subseteq Cl(F) = F$ (since F is closed), hence $Cl(A) \subseteq f^{-1}(F) = A$. Consequently, A = Cl(A), which shows that $f^{-1}(F)$ is closed in X.

- (3) \Longrightarrow (4) Let O be an open subset of \mathbb{Y} , then $\mathbb{C}_{\mathbb{Y}}O$ is a closed set in \mathbb{Y} . Therefore, by (3), the set $f^{-1}(\mathbb{C}_{\mathbb{Y}}O)$ is closed in \mathbb{X} . Since $f^{-1}(\mathbb{C}_{\mathbb{Y}}O) = \mathbb{C}_{\mathbb{X}}f^{-1}(O)$, we deduce that $f^{-1}(O)$ is open in \mathbb{X} .
- (4) \$\implies\$ (5) Obvious.
- (5) \Longrightarrow (6) Let B be a subset of \mathbb{Y} . Then, $Int(B) = \bigcup_{i \in I} \beta_i$ such that $\{\beta_i : i \in I\}$ is a family of elements from a basis \mathfrak{B} of $\mathcal{T}_{\mathbb{Y}}$. Using the inverse image, we obtain

$$f^{-1}(Int(B)) = f^{-1}\left(\bigcup_{i \in I} \beta_i\right) = \bigcup_{i \in I} f^{-1}(\beta_i).$$

Thus, $f^{-1}(Int(B))$ is an open set in \mathbb{X} (according to (5)), and since $f^{-1}(Int(B)) \subseteq f^{-1}(B)$, we conclude that $f^{-1}(Int(B)) \subseteq Int(f^{-1}(B))$ (see Proposition (3.12)).

• (6) \Longrightarrow (7). Let B be a subset of \mathbb{Y} . Using Proposition (3.15(4)) and (6), we obtain:

$$\mathbb{C}_{\mathbb{X}}f^{-1}(Cl(B)) = f^{-1}(\mathbb{C}_{\mathbb{Y}}Cl(B)) = f^{-1}(\operatorname{Int}\mathbb{C}_{\mathbb{Y}}B)$$

$$\subseteq Intf^{-1}(\mathbb{C}_{\mathbb{Y}}B) = Int\mathbb{C}_{\mathbb{X}}f^{-1}(B) = \mathbb{C}_{\mathbb{X}}Clf^{-1}(B),$$

which shows that

$$Clf^{-1}(B) \subseteq f^{-1}(Cl(B)).$$

• (7) \Longrightarrow (1) Let $x_0 \in \mathbb{X}$ and O be an open neighborhood of $f(x_0)$. Then, $\mathfrak{C}_{\mathbb{Y}}O$ is closed in \mathbb{Y} . Using (7), we obtain

$$Clf^{-1}(\mathbb{C}_{\mathbb{Y}}O) \subseteq f^{-1}(Cl(\mathbb{C}_{\mathbb{Y}}O)) = f^{-1}(\mathbb{C}_{\mathbb{Y}}O)$$

(since $\mathbb{C}_{\mathbb{Y}}O$ is closed), and thus $f^{-1}(\mathbb{C}_{\mathbb{Y}}O) = \mathbb{C}_{\mathbb{X}}f^{-1}(O)$ is closed. Consequently, $f^{-1}(O)$ is open in \mathbb{X} . Finally, since $x_0 \in f^{-1}(O)$, we conclude that $f^{-1}(O) \in \mathcal{N}_{\mathbb{X}}(x_0)$, which shows that f is continuous.

Proposition 3.41. Let (A, \mathcal{T}_A) be a subspace of a topological space $(\mathbb{X}, \mathcal{T})$. Then the canonical injection $i: A \longrightarrow \mathbb{X}$ defined by i(a) = a, for all $a \in A$ is continuous.

Proof Let O be an open set in \mathbb{X} . Then $i^{-1}(O) = O \cap A$, which is open in (A, \mathcal{T}_A) , so i is continuous.

Proposition 3.42. Let $f: (\mathbb{X}, \mathcal{T}_{\mathbb{X}}) \longrightarrow (\mathbb{Y}, \mathcal{T}_{\mathbb{Y}})$ be a continuous mapping and $A \subset \mathbb{X}$. Then the restriction $f_{|_A}: (A, \mathcal{T}_A) \longrightarrow (\mathbb{Y}, \mathcal{T}_{\mathbb{Y}})$ is continuous.

Proof Given that $f_{|A} = f \circ i$, it follows that $f_{|A}$ is continuous because it is the composition of two continuous functions.

Proposition 3.43. Let $(\mathbb{X}, \mathcal{T}_{\mathbb{X}})$ and $(\mathbb{Y}, \mathcal{T}_{\mathbb{Y}})$ be two topological spaces. If $f : (\mathbb{X}, \mathcal{T}_{\mathbb{X}}) \longrightarrow (\mathbb{Y}, \mathcal{T}_{\mathbb{Y}})$ is continuous and injective, and \mathbb{Y} is separated, then \mathbb{X} is separated.

Proof Let $x, y \in \mathbb{X}$ such that $x \neq y$, then $f(x) \neq f(y)$ (since f is injective), and since \mathbb{Y} is separated, there exist two disjoint open sets O_1 and O_2 such that $f(x) \in O_1$ and $f(y) \in O_2$. Therefore, $f^{-1}(O_1)$ and $f^{-1}(O_2)$ are two disjoint open sets such that $x \in f^{-1}(O_1)$ and $y \in f^{-1}(O_2)$, which shows that \mathbb{X} is separated.

Definition 3.29 (Sequential Continuity). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be two topological spaces. We say that f is sequentially continuous at x_0 if for every sequence (x_n) that converges to x_0 , the sequence $f(x_n)$ converges to $f(x_0)$.

Remark 3.20. We say that f is continuous (resp. sequentially continuous) on X if it is continuous (resp. sequentially continuous) at every point of X.

Proposition 3.44. Every continuous function is sequentially continuous.

Proof Let f be a function continuous at x_0 and let (x_n) be a sequence converging to x_0 . Then, if N is a neighborhood of $f(x_0)$, $f^{-1}(N)$ is a neighborhood of x_0 , so there exists $n_0 \in \mathbb{N}$ such that:

$$n \geqslant n_0 \Rightarrow x_n \in f^{-1}(N),$$

or, equivalently,

$$n \geqslant n_0 \Rightarrow f(x_n) \in N$$
,

which demonstrates that $\lim_{n\to\infty} f(x_n) = f(x_0)$.

Remark 3.21. The converse in the previous proposition is not true in general.

3.10 Open and closed maps

Let $f: \mathbb{X} \to \mathbb{Y}$ be a continuous function.

- If O is an open set in \mathbb{X} , then f(O) is not necessarily open in \mathbb{Y} .
- If F is a closed set in \mathbb{X} , then f(F) is not necessarily closed in \mathbb{Y} .

In other words, the continuous image of an open set (resp. closed set) is not necessarily an open set (resp. closed set).

Example

3.34

- 1. The function $f:(\mathbb{R},|.|) \to (\mathbb{R},|.|)$ defined by $f(x) = \sin(x)$ is continuous on \mathbb{R} , but $f(\mathbb{R}) = [-1,1]$ is not an open set in \mathbb{R} .
- 2. The function $f:(\mathbb{R},|.|) \to (\mathbb{R},|.|)$ defined by $f(x) = e^x$ is continuous on \mathbb{R} , but $f(\mathbb{R}) = (0,+\infty)$ is not a closed set in \mathbb{R} .

Definition 3.30. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be two topological spaces, and let $f : X \to Y$. We say that f is an open map (resp. closed map) if the image of every open set (resp. closed set) in X is an open set (resp. closed set) in Y.

Example

3.35.

- 1. Let X be a topological space and $A \subseteq X$. The canonical map $i: (A, \mathcal{T}_A) \to X$ defined by i(x) = x is open (resp. closed) if A is an open (resp. closed) subset of X.
- 2. Let $f:(\mathbb{R},|.|) \to (\mathbb{R},|.|)$ be the function defined by $f(x) = c \in \mathbb{R}$. If F is closed in \mathbb{R} , then $f(F) = \{c\}$ is also closed in \mathbb{R} . However, if O is open in \mathbb{R} , then $f(O) = \{c\}$ is not open in \mathbb{R} . Therefore, f(x) = c is a closed map but is not an open map.

Proposition 3.45. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be two topological spaces, and let $f : X \to Y$. Then, for any $A \subseteq X$, we have:

- 1. f is open \iff $f(IntA) \subseteq Int(f(A))$.
- 2. f is $closed \iff Cl(f(A)) \subseteq f(ClA)$.

Proof

- 1. \Longrightarrow) Suppose that f is open; then f(Int(A)) is open in \mathbb{Y} . Consequently, $f(IntA) \subset Int(f(A))$ (since $Int(A) \subset A$).
 - \Leftarrow) Suppose that $f(IntA) \subset Int(f(A))$ and let A be an open set in \mathbb{X} . Then $f(A) = f(IntA) \subset Int(f(A))$, so f(A) = Int(f(A)), which shows that f is open.
- 2. Exercise: using arguments similar to those used in (1).

Proposition 3.46. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be two topological spaces, and let $f : X \to Y$. Then, for any $A \subseteq X$ and $B \subseteq Y$, we have:

- 1. f is continuous and open \iff $f^{-1}(IntB) = Int(f^{-1}(B))$.
- 2. f is continuous and closed \iff Cl(f(A)) = f(ClA).

Proof

1. \Longrightarrow) Suppose f is open and continuous. Then we obtain

(i)
$$f^{-1}(IntB) \subset Int(f^{-1}(B)),$$

according to Proposition (3.40(6)). On the other hand, since $Int(f^{-1}(B))$ is open in \mathbb{X} , we have that $f(Int(f^{-1}(B)))$ is open in \mathbb{Y} (since f is open). Consequently, $f(Int(f^{-1}(B))) = Intf(Int(f^{-1}(B))) \subseteq Int(f(f^{-1}(B))) \subseteq IntB$, so

(ii)
$$Int(f^{-1}(B)) \subseteq f^{-1}(IntB).$$

Finally, the two inclusions (i) and (ii) show that $f^{-1}(IntB) = Int(f^{-1}(B))$.

 \iff) Suppose $f^{-1}(IntB) = Int(f^{-1}(B))$. Then f is continuous (see Proposition 3.40(6)). Moreover, if A is an open set in \mathbb{X} , we have

$$A = Int(A) \subset Int(f^{-1}(f(A))) = f^{-1}(Int(f(A)),$$

and thus $f(A) \subset Int(f(A))$. Hence, f(A) is open, so f is open.

2. Clear (using Proposition (3.40(2))) and Proposition (3.45(2))).

3.11 Homeomorphism

Definition 3.31. Let $(\mathbb{X}, \mathcal{T}_{\mathbb{X}})$ and $(\mathbb{Y}, \mathcal{T}_{\mathbb{Y}})$ be two topological spaces and $f : \mathbb{X} \longrightarrow \mathbb{Y}$. We say that f is an homeomorphism from \mathbb{X} to \mathbb{Y} if:

- 1. f is a bijection (one-to-one and onto),
- 2. f is continuous,
- 3. the inverse function f^{-1} is continuous (f is an open mapping).

If there exists an homeomorphism from \mathbb{X} to \mathbb{Y} , we say that \mathbb{X} and \mathbb{Y} are homeomorphic or topologically equivalent, and we denote this by $\mathbb{X} \cong \mathbb{Y}$. Any property preserved by an homeomorphism is called a topological property.

Example

3.36.

- 1. Let $\mathbb{X} = \mathbb{R}$ and $\mathbb{Y} = (-1,1)$ endowed with the usual topology. The function $f: \mathbb{R} \longrightarrow (-1,1)$ defined by $f(x) = \frac{x}{1+|x|}$ is a homeomorphism. Consequently, \mathbb{X} and \mathbb{Y} are homeomorphic.
- 2. Let $\mathbb{X} = (a,b)$ and $Y = \mathbb{R}$ with the usual topology. The function $f:(a,b) \longrightarrow \mathbb{R}$ defined by $f(x) = \frac{1}{x-a} + \frac{1}{x-b}$ is a homeomorphism. Therefore, \mathbb{X} and \mathbb{Y} are homeomorphic.
- 3. Let $\mathbb{X} = (0,1)$ and $\mathbb{Y} = (a,b)$ endowed with the usual topology. The function $f:(0,1) \longrightarrow (a,b)$ defined by f(x) = (b-a)x + a is a homeomorphism. Consequently, \mathbb{X} and \mathbb{Y} are homeomorphic.

m Remark 3.22.

- 1. In general, the bijectivity and continuity of f do not imply that f is a homeomorphism. For example, the map $f:(\mathbb{R},\mathcal{P}(\mathbb{R})) \longrightarrow (\mathbb{R},|\cdot|)$ defined by f(x)=x is a bijection and continuous, while f^{-1} is not continuous.
- 2. Homeomorphisms are, by definition, open and closed maps.

BIBLIOGRAPHY

- [1] N. Bourbaki. Topologie générale, Chapitres 1 à 4. Hermann, Paris, 1971.
- [2] H. Brezis. Analyse Fonctionnelle. Théorie et applications. Masson, (1983).
- [3] G. Choquet. Cours d'analyse, tome II, Topologie. Masson, Paris, 1964.
- [4] G. Christol. *Topologie*. Ellipses, 1997.
- [5] J. Dieudonné. Éléments d'analyse, tome I : fondements de l'analyse moderne. Gauthier-Villars, Paris, 1968.
- [6] J. Dixmier. Topologie générale. Presses universitaires de France, 1981.
- [7] J.L. Kelley. General Topology. Van Nostrand, (1955).
- [8] F. Nier, D. Iftimie. Introduction à la Topologie. Université de Rennes 1.
- [9] C. Tisseron. Notions de Topologie. Introduction aux espaces fonctionnels. Hermann (1985).
- [10] B. Yallaoui. Topologie Générale Elémentaire. Université Ferhat Abbas, Sétif 1.