

وزارة التعليم العالي والبحث العلمي

Sétif 1 University-Ferhat ABBAS Faculty of Sciences Department of Mathematics

INTRODUCTION TO METRIC & TOPOLOGICAL SPACES

FOR THE SECOND YEAR LMD MATHEMATICS STUDENTS

Prepared by:

Dr. CHOUGUI Nadhir

2024/2025

CONTENTS

In	trod	uction		ii	
5	Cor	\mathbf{nected}	Spaces	1	
	5.1	Conne	ctivity in Topological Spaces	1	
		5.1.1	Connected Spaces and Subsets	1	
		5.1.2	Properties of Connected Spaces	3	
		5.1.3		6	
		5.1.4	Path-connectedness	8	
	5.2	Conne	ctedness in Metric Spaces	9	
		5.2.1	Definitions and properties of connectivity in metric spaces	9	
Bibliography		graphy		0	

CHAPTER 5

CONNECTED SPACES

5.1 Connectivity in Topological Spaces

5.1.1 Connected Spaces and Subsets

Let the two spaces $(\mathbb{X}, |.|)$ and $(\mathbb{Y}, |.|)$ be such that $\mathbb{X} =]2,3[\cup]4,5[$ and $\mathbb{Y} = [2,3]\cup]3,4[$. The two subsets $O_1 =]2,3[$ and $O_2 =]4,5[$ are both open and closed in \mathbb{X} because $O_1 = \mathbb{X} \cap]2,3[=\mathbb{X} \cap [2,3]]$ and $O_2 = \mathbb{X} \cap]4,5[=\mathbb{X} \cap [4,5]]$. Moreover, we have $\mathbb{X} = O_1 \cup O_2$, so the family $\{O_1,O_2\}$ is a partition of \mathbb{X} into two disjoint open (and closed) sets. In this case, we say that \mathbb{X} is not connected, whereas \mathbb{Y} is connected because it can be written in the form $\mathbb{Y} = [2,4[$. The concept of connectivity, which we will define below, intuitively means that a space is "in one piece" or that it cannot be split into two "separated" parts.

Definition 5.1. Let (X, T) a topological space. X is said to be disconnected if it is the union of two disjoint non-empty open sets. In other words, a space is connected if it does not have a partition consisting of two non-empty open sets. We write then,

$$\mathbb{X} \text{ is connected} \iff \begin{cases} \text{There do not exist } O_1, O_2 \in \mathcal{T} \text{ such that:} \\ \bullet O_1 \cup O_2 = \mathbb{X}, \\ \bullet O_1 \cap O_2 = \emptyset, \\ \bullet O_1 \neq \emptyset \text{ and } O_2 \neq \emptyset. \end{cases}$$

An equivalent definition of the connectivity of X is as follows.

Definition 5.2. \mathbb{X} is connected if for any partition of \mathbb{X} into two open sets O_1 and O_2 , we have $O_1 = \emptyset$ or $O_2 = \emptyset$.

Proposition 5.1. Let (X, T) be a topological space. The following assertions are equivalent.

- 1. X is connected.
- 2. There does not exist a partition of X into two non-empty open sets.
- 3. There does not exist a partition of X into two non-empty closed sets.
- 4. \emptyset and \mathbb{X} are the only sets that are both open and closed (clopen sets) in \mathbb{X} .
- 5. Any subset $A \subset \mathbb{X}$ such that $A \neq \emptyset$ and $A \neq \mathbb{X}$ has a non-empty boundary.
- 6. There is no continuous and surjective map from X to a discrete space Y containing two elements.
- 7. Every continuous map $f: \mathbb{X} \longrightarrow \mathbb{Y} = \{a, b\}$ is constant.

Proof

- 1. \Longrightarrow 2. By definition.
- **2.** \Longrightarrow **3.** Suppose there exists a partition of \mathbb{X} into two non-empty closed sets F_1 and F_2 , i.e., $F_1 \cup F_2 = \mathbb{X}$ and $F_1 \cap F_2 = \emptyset$. Then F_1 and F_2 are two non-empty open sets that form a partition of \mathbb{X} because $\mathbb{C}_{\mathbb{X}}F_1 = F_2$ and $\mathbb{C}_{\mathbb{X}}F_2 = F_1$.
- 3. \Longrightarrow 4. Suppose there exists a set A that is both open and closed, and different from \mathbb{X} and \emptyset . We deduce that A and $\mathbb{C}_{\mathbb{X}}A$ form a partition of \mathbb{X} into two non-empty closed sets.
- **4.** \Longrightarrow **5.** Suppose A is a subset of \mathbb{X} such that $A \neq \emptyset$, $A \neq \mathbb{X}$, and $Cl(A) = \emptyset$. We deduce that A is both open and closed.
- **5.** \Longrightarrow **6.** Suppose there exists a continuous and surjective map $f: \mathbb{X} \longrightarrow \mathbb{Y} = \{a,b\}$. Then, the set $\{a\}$ is both open and closed. Thus, $f^{-1}(\{a\})$ is a set that is both open and closed, such that $f^{-1}(\{a\}) \neq \emptyset$ and $f^{-1}(\{a\}) \neq \mathbb{X}$. Moreover, $Cl(f^{-1}(\{a\})) = \emptyset$.
- **6.** \Longrightarrow **7.** Suppose there exists a continuous map $f: \mathbb{X} \longrightarrow \mathbb{Y} = \{a,b\}$ that is not constant. Then f is surjective.
- **7.** \Longrightarrow **1.** Suppose \mathbb{X} is not connected. Then there exist two non-empty open sets $O_1, O_2 \subset \mathbb{X}$ such that $O_1 \cup O_2 = \mathbb{X}$ and $O_1 \cap O_2 = \emptyset$. Then, the map $f : \mathbb{X} \longrightarrow \mathbb{Y} = \{a,b\}$ defined by f(x) = a if $x \in O_1$ and f(x) = b if $x \in O_2$ is continuous but not constant.

Example

5.1.

- 1. \mathbb{R} is connected.
- 2. Any discrete space (X, δ) such that $card(X) \ge 2$ is not connected. Indeed, if $x \in X$, then we have $\{x\} \cup \mathbb{C}_X \{x\} = X$ and $\{x\} \cap \mathbb{C}_X \{x\} = \emptyset$, with $\{x\}$ and $\mathbb{C}_X \{x\}$ being two open (two closed) sets.
- 3. It is evident that any space equipped with the trivial topology is connected.
- 4. Let $X = \{a, b, c, d\}$ and $T = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}\$. It is clear that (X, T) is connect.

Definition 5.3. Let (X, T) be a topological space and A a non-empty subset of X. We say that A is connected if the subspace (A, T_A) is connected. Classically, we consider the empty set as connected.

Example

5.2.

- 1. Every interval in \mathbb{R} is connected.
- 2. Every open (closed) ball in \mathbb{R}^n is connected.
- 3. The space $(\mathbb{R}^*, |\cdot|)$ is not connected (why?).

5.1.2 Properties of Connected Spaces

Proposition 5.2. If a subset A of a topological space (X, T) is connected, then the existence of two open sets $O_1, O_2 \in T$ such that $A \subset O_1 \cup O_2$ and $O_1 \cap O_2 = \emptyset$ implies that $A \subset O_1$ or $A \subset O_2$.

Proof Suppose A is connected and let $O_1, O_2 \in \mathcal{T}$ such that $A \subset O_1 \cup O_2$ and $O_1 \cap O_2 = \emptyset$. Then, $A = (A \cap O_1) \cup (A \cap O_2)$ and $(A \cap O_1) \cap (A \cap O_2) = \emptyset$. Since A is connected, we obtain $(A \cap O_1 = \emptyset)$ or $(A \cap O_2 = \emptyset)$, from which it follows that $A \subset O_2$ or $A \subset O_1$.

Proposition 5.3. Let (X, T) be a topological space and A, B two subsets of X such that A is connected and $A \subset B \subset Cl(A)$. Then, we have:

1. If A is connected, then B is connected.

- 2. If A is connected, then Cl(A) is connected.
- 3. If A is a connected and dense subset of X, then X is connected.

Proof

- 1. Let $f: B \longrightarrow \{0,1\}$ be a continuous function. Since A is connected and f is continuous on A, we obtain that f is constant on A. Since f is continuous on B, the set $G = \{x \in B : f(x) \in f(A)\}$ is a closed set of B containing A, so $Cl(A)_B \subset G$. Thus, f is constant on the closure of A in B, which is $Cl(A)_B = B \cap Cl(A) = B$. We conclude that f is constant on B. Therefore, B is connected.
- 2. It is sufficient to take B = Cl(A) in (1).
- 3. We have $Cl(A) = \mathbb{X}$ because A is dense in \mathbb{X} , and Cl(A) is connected because A is connected (see question (2)). We conclude that \mathbb{X} is connected.

Proposition 5.4. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be two topological spaces, and let $f : X \longrightarrow Y$ be a continuous function. If X is connected, then f(X) is a connected subset of Y.

Proof Let G be a subset of $f(\mathbb{X})$ that is both open and closed in the induced topology. Since f is continuous as a function with values in $f(\mathbb{X})$, we deduce that $f^{-1}(G)$ is both open and closed in \mathbb{X} . Since \mathbb{X} is connected, we deduce that $f^{-1}(G) = \emptyset$ or $f^{-1}(G) = \mathbb{X}$. Since $f(f^{-1}(G)) = G$, we obtain that $G = \emptyset$ or $G = f(\mathbb{X})$, which shows that $f(\mathbb{X})$ is connected.

Remark 5.1. According to the previous proposition, connectedness is a topological property.

Proposition 5.5. Let (X, T) be a topological space.

- 1. If $\{A_i : i \in I\}$ is an arbitrary family of connected subsets of X such that $\bigcap_{i \in I} A_i \neq \emptyset$, then $\bigcup_{i \in I} A_i$ is connected.
- 2. If $\{A_i : i \in I\}$ is an arbitrary family of connected subsets of \mathbb{X} such that $A_i \cap A_j \neq \emptyset$ for all $i, j \in I$, then $\bigcup_{i \in I} A_i$ is connected.
- 3. If $\{A_i : i \in I\}$ is an arbitrary totally ordered family of connected subsets of \mathbb{X} , then $\bigcup_{i \in I} A_i$ is connected.

We will provide the proof for the first case only.

Proof Let $a \in \bigcap_{i \in I} A_i \neq \emptyset$. If $f : \bigcup_{i \in I} A_i \longrightarrow \{0,1\}$ is a continuous function, then $f_{|A_i|}$ is continuous, and thus constant by the connectedness of A_i . Since $a \in A_i$ for all $i \in I$, we obtain f(x) = f(a) for all $x \in A_i$. Therefore, f(x) = f(a) for all $x \in \bigcup_{i \in I} A_i$, i.e., f is constant on $\bigcup_{i \in I} A_i$, which shows that $\bigcup_{i \in I} A_i$ is connected.

Proposition 5.6. A subset A of \mathbb{R} is connected if and only if it is an interval.

Proof

- \Longrightarrow) Suppose that the set $A \subset \mathbb{R}$ is not an interval in \mathbb{R} . Then, there exist points $x, y \in A$ and $z \notin A$ such that x < z < y. Define $O_1 =]-\infty, z[\cap A \text{ and } O_2 =]z, +\infty[\cap A, \text{ which are two non-empty open subsets of } A. Furthermore, we have <math>O_1 \cap O_2 = \emptyset$ and $O_1 \cup O_2 = A$. Therefore, A is not connected.
- \Leftarrow Let A be a non-empty interval in \mathbb{R} . Suppose $A = O_1 \cup O_2$, where O_1 and O_2 are two non-empty open subsets of A with $O_1 \cap O_2 = \emptyset$. Let $x \in O_1$ and $y \in O_2$ such that x < y, and let $z = \sup(O_1 \cap [x, y])$.

On the one hand, if $z \in O_1$, then z < y, which implies the existence of a real number r > 0 such that $[z, z + r] \subset O_1 \cap [x, y]$, contradicting the definition of z.

On the other hand, if $z \in O_2$, then z > x, which implies the existence of a real number r > 0 such that $|z - r, z| \subset O_2 \cap [x, y]$, again contradicting the definition of z.

Thus, we conclude that $z \notin O_1$ and $z \notin O_2$, which is impossible because $[x,y] \subset A$. Therefore, A is connected.

Proposition 5.7. Let (X, \mathcal{T}) be a topological space and $f: X \longrightarrow \mathbb{R}$ a continuous function.

- 1. The image of any connected subset of X is an interval in \mathbb{R} .
- 2. Let $a,b \in f(\mathbb{X})$. If \mathbb{X} is connected, then the equation f(x) = c has a solution for every $c \in [a,b]$.

Proof

- 1. Let A be a connected subset of X. Then, f(A) is connected in \mathbb{R} (see Proposition 5.4), which implies that f(A) is an interval (see Proposition 5.6).
- 2. Using the two propositions (5.4) and (5.6), we conclude that f(X) is an interval. Then, $[a,b] \subset f(X)$ which implies that

$$\forall c \in [a, b], c \in f(X).$$

Therefore, there exists $x \in \mathbb{X}$ such that f(x) = c.

Proposition 5.8. Let $((X, \mathcal{T}_X))$ and $((Y, \mathcal{T}_Y))$ be two topological spaces. Then $X \times Y$ is connected if and only if X and Y are connected.

Proof

- \Longrightarrow) Suppose that $\mathbb{X} \times \mathbb{Y}$ is connected. We have $p_{\mathbb{X}}(\mathbb{X} \times \mathbb{Y}) = \mathbb{X}$ and $p_{\mathbb{Y}}(\mathbb{X} \times \mathbb{Y}) = \mathbb{Y}$, where $p_{\mathbb{X}}$ and $p_{\mathbb{Y}}$ are the continuous canonical projections. It follows that \mathbb{X} and \mathbb{Y} are connected.
- \iff Suppose that \mathbb{X} and \mathbb{Y} are connected, and let $f: \mathbb{X} \times \mathbb{Y} \longrightarrow \{0,1\}$ be a continuous function. Then, it suffices to show that f is constant. Since \mathbb{Y} is connected, the function $f(x,\cdot): \mathbb{Y} \longrightarrow \{0,1\}$ is constant, meaning $f(x,y_1) = f(x,y_2)$ for all $x \in \mathbb{X}$.

Since \mathbb{X} is connected, the function $f(\cdot,y): \mathbb{X} \longrightarrow \{0,1\}$ is constant, meaning $f(x_1,y) = f(x_2,y)$ for all $y \in \mathbb{Y}$. Therefore, $f(x_1,y_1) = f(x_2,y_2)$ for all $(x_1,y_1), (x_2,y_2) \in \mathbb{X} \times \mathbb{Y}$, which shows that f is constant. Thus, $\mathbb{X} \times \mathbb{Y}$ is connected.

In the general case, we have the following result.

Proposition 5.9. Let $\{(X_i, \mathcal{T}_i) : i \in I\}$ be a family of topological spaces. Then $\prod_{i \in I} X_i$ is connected if and only if X_i is connected for every $i \in I$.

5.1.3 Connected components, locally connected spaces

Definition 5.4. Let (X, T) be a topological space. For each $x \in X$, we call the connected component of x, denoted by C(x), the equivalence class of x under the relation R defined

, by " $x\mathcal{R}y \iff x$ and y belong to the same connected subset of X."

Remark 5.2. According to the previous definition, we conclude that the connected component of a point x is the union of all connected subsets containing x. In other words, it is the largest connected subset containing x. Moreover, the connected components of \mathbb{X} form a partition of \mathbb{X} .

Definition 5.5. A connected component of a space X is a maximal connected subset of X, i.e., a connected subset that is not contained in any other (strictly) larger connected subset of X.

Example

5.3.

- 1. The only connected component in $(\mathbb{R}, |\cdot|)$ is \mathbb{R} itself.
- 2. $(\mathbb{R}^*, |\cdot|)$ has two connected components: \mathbb{R}^*_- and \mathbb{R}^*_+ .

Definition 5.6. Let (X, \mathcal{T}) be a topological space, and let $A \subset X$. The connected components of A are defined as the connected components of (A, \mathcal{T}_A) .

Proposition 5.10. Every connected component is closed.

Proof Let A be a connected component. Then A is connected, and thus Cl(A) is a connected subset containing A, so Cl(A) = A, which shows that A is closed.

Definition 5.7. Let (X, T) be a topological space. We say that X is locally connected if every point $x \in X$ admits a neighborhood basis consisting of open connected sets.

Example 5.4.

- 1. \mathbb{R} is locally connected.
- 2. \mathbb{Q} is not locally connected.
- 3. Every discrete space is locally connected. Indeed, $\mathcal{N}(x) = \{\{x\}\}\$ forms a neighborhood basis consisting of open connected sets for each point $x \in \mathbb{X}$.

Proposition 5.11. Let (X, T) be a topological space. X is locally connected if and only if every connected component of every open set in X is open.

Proof

- \Longrightarrow) Suppose that \mathbb{X} is locally connected. Let O be an open set in \mathbb{X} , and let $\mathcal{C}(O)$ be a connected component of O. Then, for every $x \in \mathcal{C}(O)$, there exists $N \in \mathcal{N}(x)$ such that N is connected and $N \subset O$. Thus, $N \subset \mathcal{C}(O)$, which shows that $\mathcal{C}(O)$ is open (a neighborhood of each of its points).
- \iff Let $x \in X$ and N be an open neighborhood of x. Then, the connected component of x in N is open, which shows that X is locally connected.

5.1.4 Path-connectedness

Definition 5.8. Let (X, \mathcal{T}) be a topological space and [x, y] an interval in \mathbb{R} . A path in a subset A of X is any continuous function $\gamma : [x, y] \longrightarrow A$. The image $\gamma([x, y])$ of the path is called an arc with starting point $\gamma(x)$ and endpoint $\gamma(y)$.

Remark

5.3. We can replace [x,y] with [0,1] because they are homeomorphic.

Definition 5.9. Let (X, T) be a topological space and A a subset of X. We say that A is arc-connected if for every $a, b \in A$, there exists an arc contained in A with starting point a and endpoint b.

Example

5.5.

- 1. \mathbb{R} is arc-connected. It is enough to take as a path in \mathbb{R} the map $\gamma:[0,1] \longrightarrow \mathbb{R}$ defined by $\gamma(x) = a + x(b-a)$, for all $a, b \in \mathbb{R}$.
- 2. \mathbb{Q} and $\mathbb{C}_{\mathbb{R}}\mathbb{Q}$ are not arc-connected.

Proposition 5.12. An arc-connected space is connected.

Proof

Suppose that X is an arc-connected space and let $a \in X$. Then, for every $b \in X$, there exists a continuous function $\gamma_b : [0,1] \to X$ such that $\gamma_b(0) = a$ and $\gamma_b(1) = b$. Therefore, the collection $\{\gamma_b([0,1]) : b \in X\}$ forms a family of connected sets whose intersection is non-empty (since it contains a), and $X = \bigcup_{b \in X} \gamma_b([0,1])$ which implies that X is connected.

5.2 Connectedness in Metric Spaces

The definitions and properties of connectedness in metric spaces are the same as those we have seen in topological spaces. Therefore, it is enough to give a brief reminder of these definitions and properties.

5.2.1 Definitions and properties of connectivity in metric spaces

- \mathbb{X} is connected if and only if the only subsets of \mathbb{X} that are both open and closed are the empty set \emptyset and \mathbb{X} .
- X is connected if and only if there is no partition of X into two non-empty open sets.
- X is connected if and only if there is no partition of X into two non-empty closed sets.
- \mathbb{X} is connected if and only if every continuous function $f:(\mathbb{X},d)\longrightarrow (\{0,1\},\delta)$ is constant.
- The continuous image of a connected set is connected.
- Connectivity is a topological property.
- $\mathbb{X} \times \mathbb{Y}$ is connected if and only if both \mathbb{X} and \mathbb{Y} are connected.
- If A is connected and $A \subset B \subset Cl(A)$, then B is connected.
- If A is connected, then Cl(A) is also connected.
- \mathbb{X} is arc-connected if for all $a, b \in \mathbb{X}$, there exists a continuous function $f : [0, 1] \longrightarrow \mathbb{X}$ such that f(0) = a and f(1) = b.
- Every arc-connected space is connected.
- A connected space is not necessarily arc-connected.
- A subset $A \subset \mathbb{R}$ is connected if and only if A is an interval.
- If X is connected and $f: X \longrightarrow \mathbb{R}$ is continuous, then f(X) is an interval.
- If $f:[a,b] \longrightarrow \mathbb{R}$ is continuous, then f([a,b]) = [c,d].

BIBLIOGRAPHY

- [1] N. Bourbaki. Topologie générale, Chapitres 1 à 4. Hermann, Paris, 1971.
- [2] H. Brezis. Analyse Fonctionnelle. Théorie et applications. Masson, (1983).
- [3] G. Choquet. Cours d'analyse, tome II, Topologie. Masson, Paris, 1964.
- [4] G. Christol. *Topologie*. Ellipses, 1997.
- [5] J. Dieudonné. Éléments d'analyse, tome I : fondements de l'analyse moderne. Gauthier-Villars, Paris, 1968.
- [6] J. Dixmier. Topologie générale. Presses universitaires de France, 1981.
- [7] J.L. Kelley. General Topology. Van Nostrand, (1955).
- [8] F. Nier, D. Iftimie. Introduction à la Topologie. Université de Rennes 1.
- [9] C. Tisseron. Notions de Topologie. Introduction aux espaces fonctionnels. Hermann (1985).
- [10] B. Yallaoui. Topologie Générale Elémentaire. Université Ferhat Abbas, Sétif 1.