

Sétif 1 University-Ferhat ABBAS **Faculty of Sciences Department of Mathematics**

Setif 1 University - Ferhat ABBAS

FACULTY OF SCIENCES

Introduction to Metric and Topological Spaces

Mathematics Bachelor's Degree - LMD - 3rd Semester

Series 3: Continuity in Metric Spaces

Exercise 1:

- 1. Find d(3, [3, 5[)) and $d(\sqrt{2}, \mathbb{Q})$.
- 2. Let $A = \{(x,y) \in \mathbb{R}^2 : xy = 1\}$ and $B = \{(x,y) \in \mathbb{R}^2 : y = 0\}$, calculate d(A,B).
- 3. Calculate diam($[1,2) \cap \mathbb{Q}$) and diam($[-2,1) \cap (\mathbb{C}_{\mathbb{R}}\mathbb{Q})$.

Exercise 2:

- 1. Show that (a, b) and (c, d), where $a, b, c, d \in \mathbb{R}$, are homeomorphic.
- 2. Show that \mathbb{R} and (-1,1) are homeomorphic.
- 3. Is \mathbb{R} homeomorphic to every open interval in \mathbb{R} ?

Exercise 3: Let (\mathbb{X}, d) be a metric space and $f: (\mathbb{X}, d) \longrightarrow (\mathbb{R}, |\cdot|)$. Show that f is continuous if and only if, for every $a \in \mathbb{R}$, the sets $f^{-1}((a, +\infty))$ and $f^{-1}((-\infty, a))$ are open in X.

Exercise 4: Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that f(x) = 0 for all $x \in \mathbb{Q}$ (the set of rational numbers). Prove that f(x) = 0 for all $x \in \mathbb{R}$ (the set of real numbers).

Exercise 5: Let $f: \mathbb{X} \to \mathbb{Y}$ and $g: \mathbb{Y} \to \mathbb{Z}$ be continuous functions. Show that if $g \circ f$ is a homeomorphism and f is surjective, then f and g are homeomorphism.

Exercise 6: Let (X, d) be a metric space, and let A and B be two non-empty, closed subsets of X such that $A \cap B = \emptyset$. Define the functions $f, g : X \to \mathbb{R}_+$ by

$$f(x) = \frac{d(x, A)}{d(x, A) + d(x, B)}, \quad g(x) = d(x, A).$$

- 1. Show that for any continuous function $h: \mathbb{X} \to \mathbb{R}$, the set $K = \{x \in \mathbb{X} : h(x) = 0\}$ is closed.
- 2. Show that g is continuous.
- 3. Deduce that the function f is continuous.
- 4. Find $f^{-1}(\{0\})$ and $f^{-1}(\{1\})$.