وزارة التعليم العالى والبحث العلمي

Sétif 1 University-Ferhat ABBAS Faculty of Sciences Department of Mathematics

Introduction to Metric and Topological Spaces

Mathematics Bachelor's Degree - LMD - 3rd Semester

Series 3: Continuity in Metric Spaces

Exercise 1:

- 1. We have $3 \in Cl((3,5)) = [3,5]$, which implies d(3,(3,5)) = 0. We have $\sqrt{2} \in Cl(\mathbb{Q}) = \mathbb{R}$, which implies $d(\sqrt{2},\mathbb{Q}) = 0$.
- 2. d(A, B) = 0 because,

$$\lim_{n \to +\infty} \left(\frac{1}{x}\right) = 0.$$

3.

$$\begin{aligned} \operatorname{diam}\left([1,2)\cap\mathbb{Q}\right) &= \sup_{x,y\in[1,2)\cap\mathbb{Q}} d(x,y) = |2-1| = 1. \\ \operatorname{diam}\left([-2,1)\cap\mathbb{C}_{\mathbb{R}}\mathbb{Q}\right) &= \sup_{x,y\in[-2,1)\bigcap\mathbb{C}_{\mathbb{R}}\mathbb{Q}} d(x,y) = |1-(-2)| = 3. \end{aligned}$$

Exercise 2:

1. Let $f:(a,b)\to(c,d)$ be defined by

$$f(x) = c + (d - c)\frac{x - a}{b - a},$$

for all $a, b, c, d \in \mathbb{R}$. It is clear that f is a continuous and bijective function (because it is a polynomial). Its inverse $f^{-1}:(c,d)\to(a,b)$ is given by

$$f^{-1}(x) = a + (b-a)\frac{x-c}{d-c},$$

for all $a, b, c, d \in \mathbb{R}$. It is also clear that f^{-1} is continuous (because it is a polynomial). Hence, f is a homeomorphism, and therefore, (a, b) and (c, d) are homeomorphic. 2. Let $f: \mathbb{R} \to (-1,1)$ be defined by

$$f(x) = \frac{x}{1 + |x|},$$

for all $x \in \mathbb{R}$. It is clear that f is continuous and bijective. Its inverse $f^{-1}: (-1,1) \to \mathbb{R}$ is given by

$$f^{-1}(x) = \frac{x}{1 - |x|}.$$

It is also clear that f^{-1} is continuous. Hence, f is a homeomorphism, and therefore, \mathbb{R} and (-1,1) are homeomorphic.

3. Since the relation homeomorphic is transitive, \mathbb{R} is homeomorphic to any open interval (using parts (1) and (2): $\mathbb{R} \xrightarrow{\text{homeo } \dots} (-1,1) \xrightarrow{\text{homeo } \dots} (c,d)$).

Exercise 3: Let (\mathbb{X}, d) be a metric space and $f : (\mathbb{X}, d) \to (\mathbb{R}, |\cdot|)$.

 \implies) Suppose that f is continuous. Since the sets $(-\infty, a)$ and $(a, +\infty)$ are open in \mathbb{R} , it follows that $f^{-1}((-\infty, a))$ and $f^{-1}((a, +\infty))$ are open in \mathbb{X} .

 \iff) Suppose that $f^{-1}((-\infty,a))$ and $f^{-1}((a,+\infty))$ are open in \mathbb{X} . Let a < b. Then

$$(a,b) = (-\infty,b) \cap (a,+\infty).$$

Therefore,

$$(a,b) = (-\infty,b) \cap (a,+\infty).$$

$$f^{-1}((a,b)) = f^{-1}((-\infty,b)) \cap f^{-1}((a,+\infty))$$

is open in X (since it is the intersection of two open sets).

Now, let O be an open set in \mathbb{R} . Then $O = \bigcup_{i \in I} (a_i, b_i)$, where (a_i, b_i) are open intervals. It follows that

$$f^{-1}(O) = \bigcup_{i \in I} f^{-1}((a_i, b_i))$$

is open in \mathbb{X} (since it is the union of open sets). This implies that f is continuous.

Exercise 4: Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that

$$f(x) = 0$$
, for all $x \in \mathbb{Q}$.

We need to show that

$$f(x) = 0$$
, for all $x \in \mathcal{C}_{\mathbb{R}}\mathbb{Q}$. (ii)

Let $x \in \mathcal{C}_{\mathbb{R}}\mathbb{Q}$. Then $x \in Cl(\mathbb{Q}) = \mathbb{R}$. Therefore, there exists a sequence $(x_n) \subset \mathbb{Q}$ such that $x_n \to x$ as $n \to +\infty$. Since f is continuous, we have $f(x_n) \to f(x)$. But by the hypothesis, $f(x_n) = 0$ (because $x_n \in \mathbb{Q}$), which implies f(x) = 0 for all $x \in \mathbb{C}_{\mathbb{R}}\mathbb{Q}$.

Finally, combining (i) and (ii), we conclude that f(x) = 0 for all $x \in \mathbb{R}$.

Exercise 5: Let $f: \mathbb{X} \to \mathbb{Y}$ and $g: \mathbb{Y} \to \mathbb{Z}$ be continuous functions. Show that if $g \circ f$ is a homeomorphism and f is surjective, then f and g are homeomorphism.

Exercise 6: Let (\mathbb{X}, d) be a metric space, and let A and B be two non-empty, closed subsets of \mathbb{X} such that $A \cap B = \emptyset$. Define the functions $f, g : \mathbb{X} \to \mathbb{R}_+$ by

$$f(x) = \frac{d(x, A)}{d(x, A) + d(x, B)}, \quad g(x) = d(x, A).$$

- 1. The set $K = \{x \in \mathbb{X} : h(x) = 0\} = h^{-1}(\{0\})$ is closed because it is the preimage of a closed set in \mathbb{R} under a continuous function.
- 2. Let $a \in A$. Then

$$d(x, a) \le d(x, y) + d(y, a), \quad \forall x, y \in A$$

Let
$$a\in A$$
. Then
$$d(x,a)\leq d(x,y)+d(y,a),\ \ \forall x,y\in A,$$
 which shows that
$$d(x,A)-d(y,A)\leqslant d(x,y),\ \ \forall x,y\in A.$$
 (i) Using similar arguments, we also obtain

$$d(y, A) - d(x, A) \leqslant d(x, y), \quad \forall x, y \in A.$$
 (ii)

From (i) and (ii), we deduce

e deduce
$$|g(x) - g(y)| = |d(x, A) - d(y, A)| \le d(x, y),$$

which shows that g is continuous (1-Lipschitz).

- 3. Since A and B are closed, $x \in Cl(A) = A \implies d(x, A) = 0$. Moreover, since $A \cap B = \emptyset$, we deduce that $x \notin B = Cl(B)$, and thus d(x, B) > 0. This shows that f is well-defined because d(x,A) and d(x,B) cannot both be zero simultaneously. Now, since $x\mapsto d(x,A)$ and $x \mapsto d(x, B)$ are continuous functions (as shown earlier), the function f is continuous because it is the quotient of two continuous functions.
- 4. We have

$$f(x) = 0 \iff d(x, A) = 0$$

 $\iff x \in Cl(A) = A.$

Thus, $A = \{x \in \mathbb{X} : f(x) = 0\} = f^{-1}(\{0\}).$

5. Similarly,

$$f(x) = 1 \iff d(x, B) = 0$$

 $\iff x \in Cl(B) = B.$

Thus, $B = \{x \in \mathbb{X} : f(x) = 1\} = f^{-1}(\{1\}).$

