

Sétif 1 University-Ferhat ABBAS **Faculty of Sciences Department of Mathematics**

FACULTY OF SCIENCES

Introduction to Metric and Topological Spaces

Mathematics Bachelor's Degree - LMD - 3rd Semester

Series 4: Complete metric spaces

Exercise 1: Among the following sets, indicate those that are complete in the space $(\mathbb{R}, |.|)$.

1) \mathbb{Q} , 2) $\mathcal{C}_{\mathbb{R}}\mathbb{Q}$, 3) $\mathbb{Q} \cap [5,6]$, 4) $(1,+\infty)$, 5) \mathbb{N} , 6) [a,b], such that $a,b \in \mathbb{R}$.

Exercise 2: Show that every discrete metric space is complete.

Exercise 3: Is \mathbb{R} complete with the following distances:

1) $d_a(x,y) = |x^3 - y^3|$, 2) $d_b(x,y) = |e^x - e^y|$, 3) $d_c(x,y) = |\arctan(x) - \arctan(y)|$.

Exercise 4: Let (\mathbb{X}, d) be a complete metric space and $\mathbb{Y} \subset \mathbb{X}$. Show that (\mathbb{Y}, d) is a complete space if and only if \mathbb{Y} is closed set in \mathbb{X} .

Exercise 5: Let (X, d) be a metric space. Show that any finite union of complete subsets of \mathbb{X} is a complete subset of \mathbb{X} .

Exercise 6: Let $(\mathbb{X}, d_{\mathbb{X}})$ and $(\mathbb{Y}, d_{\mathbb{Y}})$ be two metric spaces such that $(\mathbb{X}, d_{\mathbb{X}})$ is complete. Let A be a closed set, and $f: A \longrightarrow \mathbb{Y}$ a continuous function that satisfies $d_{\mathbb{Y}}(f(x), f(y)) \geqslant d_{\mathbb{X}}(x, y)$ for all $x, y \in A$. Show that f(A) is closed in $(\mathbb{Y}, d_{\mathbb{Y}})$.

Exercise 7: Let $f: (\mathbb{X}, d_{\mathbb{X}}) \longrightarrow (\mathbb{Y}, d_{\mathbb{Y}})$ be a uniformly continuous function, and let $(x_n)_n$ be a Cauchy sequence in X.

- 1. Show that $(f(x_n))$ is a Cauchy sequence in \mathbb{Y} .
- 2. If, in addition, f is bijective and f^{-1} is continuous, show that if Y is complete, then X is complete.

Exercise 8: Let $\mathbb{X} = \{x \in \mathbb{Q} : x \geqslant 1\}$. Consider the function $f : \mathbb{X} \longrightarrow \mathbb{X}$ defined by

$$f(x) = \frac{x}{2} + \frac{1}{x}$$

- 1. Show that $\forall x, y \in \mathbb{X}$, $|f(x) f(y)| \leq \frac{1}{2}|x y|$.
- 2. Show that f has no fixed points.
- 3. Why does the result of the previous question not contradict the fixed-point theorem?

Exercise 9:

- 1. Show that for $x \ge 1$ and $t \ge 0$ we have $\sqrt{x+t} \sqrt{x} \le \frac{t}{2}$.
- 2. Show that $f(x) = \sqrt{x}$ is a contraction on $[1, +\infty)$.
- 3. Find the fixed point of f.

Exercise 10: Let $f:[1,+\infty) \longrightarrow [1,+\infty)$ be defined by $f(x)=x+\frac{1}{x}$.

- 1. Show that $[1, +\infty)$ is complete and that |f(x) f(y)| < |x y| for all $x, y \in [1, +\infty)$.
- 2. Show that f has no fixed points.