وزارة التعليم العالى والبحث العل

Sétif 1 University-Ferhat ABBAS **Faculty of Sciences Department of Mathematics**

Setif 1 University - Ferhat ABBAS

Introduction to Metric and Topological Spaces

Mathematics Bachelor's Degree - LMD - 3rd Semester

Series 5: Topological Spaces

Exercise 1: Let $X = \{1, 2, 3, 4\}, \ \mathcal{T} = \{\emptyset, X, \{3\}, \{4\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$ and $A = \{1, 3\}, B = \{2, 4\} \subset \mathbb{X}.$

- 1. Show that (X, \mathcal{T}) is a topological space.
- 2. Find $\mathcal{N}(1)$, $\mathcal{N}(2)$, $\mathcal{N}(3)$, $\mathcal{N}(4)$.
- 3. Find Cl(A), Cl(B), Int(A), Int(B), A' and B
- 4. Find $\partial(A)$, $\partial(B)$, Ext(A), Ext(B).
- 5. Find Is(A) et Is(B).
- 6. Determine \mathcal{T}_A et \mathcal{T}_B .
- 7. Is (X, T) a Hausdorff (separated) topological space?

Exercise 2: Let \mathbb{X} an infinite set and A a subset of \mathbb{X} . Define the following family

$$\mathcal{T}_{Cof} = \{O \subset \mathbb{X} : \mathbf{C}_{\mathbb{X}}O \text{ is finite}\} \cup \{\emptyset\}$$

- 1. Show that the family \mathcal{T}_{Cof} is a topology on \mathbb{X} .
- 2. Determine the closed sets in \mathbb{X} .
- 3. If A is finite, find Cl(A), Int(A), and $\partial(A)$.
- 4. If A is infinite, find Cl(A), Int(A), and $\partial(A)$.

Exercise 3: Let f be a function from a non-empty set \mathbb{X} to a topological space $(\mathbb{Y}, \mathcal{T}_{\mathbb{Y}})$, and let

$$\mathcal{T} = \{ f^{-1}(G) : G \in \mathcal{T}_{\mathbb{Y}} \}.$$

Show that \mathcal{T} is a topology on \mathbb{X} .

Exercise 4: Let (X, T) be a topological space and A, B two subsets of X. Prove that:

- 1. $A \subseteq B$ and A is open $\Longrightarrow A \subseteq Int(B)$.
- 2. $A \subseteq B \Longrightarrow Int(A) \subseteq Int(B)$.
- 3. Int(A) = Int(Int(A)).
- 4. $Int(A \cap B) = Int(A) \cap Int(B)$.
- 5. $Int(A) \cup Int(B) \subset Int(A \cup B)$.
- 6. $A \in \mathcal{N}(B) \iff B \subset Int(A)$.
- 7. $Int(\mathbf{C}_{\mathbb{X}}A) = \mathbf{C}_{\mathbb{X}}Cl(A)$.
- 8. $Cl(\mathbf{C}_{\mathbb{X}}A) = \mathbf{C}_{\mathbb{X}}Int(A)$.
- 9. $\partial(A)$ is a closed set.
- 10. A is both open and closed $\iff \partial(A) = \emptyset$.
- 11. A is open $\iff \partial(A) \cap A = \emptyset$.
- 12. A is closed $\iff \partial(A) \subseteq A$.

Exercise 5: Let \mathfrak{B} and \mathfrak{B}' be two bases for the topologies \mathcal{T} and \mathcal{T}' , respectively. Prove that $\mathcal{T} \subset \mathcal{T}'$ if and only if for every $B \in \mathfrak{B}$ and $x \in B$, there exists $B' \in \mathfrak{B}'$ such that $x \in B' \subset B$.

Exercise 6: Prove that the function $f:(\mathbb{X},\mathcal{T}_{\mathbb{X}}) \longrightarrow (\mathbb{Y},\mathcal{T}_{\mathbb{Y}})$ is continuous in each of the following cases:

- 1. $(X, \mathcal{T}_X) = (Y, \mathcal{T}_Y)$ and f(x) = x.
- 2. f is constant.
- 3. $\mathcal{T}_{\mathbb{X}} = \mathcal{T}_{\text{Disc}}$.
- 4. $\mathcal{T}_{\mathbb{Y}} = \mathcal{T}_{\text{Ind}}$.

Exercise 7: Prove that if $f, g : (\mathbb{X}, \mathcal{T}_{\mathbb{X}}) \longrightarrow (\mathbb{Y}, \mathcal{T}_{\mathbb{Y}})$ are continuous functions and $(\mathbb{Y}, \mathcal{T}_{\mathbb{Y}})$ is **Hausdorff**, then the following hold:

- 1. $A = \{x \in \mathbb{X} : f(x) = g(x)\}$ is closed in \mathbb{X} .
- 2. $\Gamma_f = \{(x, f(x)) : x \in \mathbb{X}\}$ is closed in $\mathbb{X} \times \mathbb{Y}$.

Exercise 8: Prove that every homeomorphism is an open and closed map.