وزارة التعليم العالى والبحث العلمي

Sétif 1 University-Ferhat ABBAS Faculty of Sciences Department of Mathematics

Introduction to Metric and Topological Spaces

Mathematics Bachelor's Degree - LMD - 3rd Semester

Solution of Series 5 (Topological Spaces)

Indication 1: Int(A) is the largest open set contained in A.

Indication 2: Cl(A) is the smallest closed set containing A.

Exercise 1: Let $\mathbb{X} = \{1, 2, 3, 4\}, \ \mathcal{T} = \{\emptyset, \mathbb{X}, \{3\}, \{4\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$ and $A = \{1, 3\}, B = \{2, 4\} \subset \mathbb{X}.$

- 1. (c_1) We have $\mathbb{X}, \emptyset \in \mathcal{T}$ by definition.
 - ② It is clear that that any union of elements of $\mathcal T$ is an element of $\mathcal T$
 - ©3 It is clear that any finite intersection of elements of \mathcal{T} is an element of \mathcal{T} From ©1, ©2 and ©3 we conclude that $(\mathbb{X}, \mathcal{T})$ is a topological space.
- 2. $\mathcal{N}(1) = \{X, \{1, 3, 4\}\}.$
 - $\mathcal{N}(2) = \{X, \{2, 3, 4\}\}.$
 - $\mathcal{N}(3) = \{X, \{3\}, \{1,3\}, \{2,3\}, \{3,4\}, \{1,3,4\}, \{1,2,3\}, \{2,3,4\}\}.$
 - $\mathcal{N}(4) = \{X, \{4\}, \{1,4\}, \{2,4\}, \{3,4\}, \{1,3,4\}, \{1,2,4\}, \{2,3,4\}\}.$
- 3. $Cl(A) = Cl(\{1,3\}) = \{1,2,3\}.$
 - $Cl(B) = Cl(\{2,4\}) = \{1,2,4\}.$
 - $Int(A) = Int(\{1,3\}) = \{3\}.$
 - $Int(B) = Int(\{2,4\}) = \{4\}.$
 - $A' = \{1, 3\}' = \{1, 2\}.$
 - $B' = \{2, 4\}' = \{1, 2\}.$

4. • $\partial(A) = Cl(A) \setminus Int(A) = \{1, 2, 3\} \setminus \{3\} = \{1, 2\}.$

• $\partial(B) = Cl(B) \setminus Int(B) = \{1, 2, 4\} \setminus \{4\} = \{1, 2\}.$

• $Ext(A) = \mathcal{C}_{\mathbb{X}}Cl(A) = \{4\}.$

• $Ext(B) = \mathbf{C}_{\mathbb{X}}Cl(B) = \{3\}.$

5. • $Is(A) = \{3\}$ and • $Is(B) = \{4\}$.

6. • $\mathcal{T}_A = \{A \cap O : O \in \mathcal{T}\} = \{\emptyset, A, \{3\}\}.$

• $\mathcal{T}_B = \{B \cap O : O \in \mathcal{T}\} = \{\emptyset, B, \{4\}\}.$

7. For all $N \in \mathcal{N}(1)$ and $W \in \mathcal{N}(2)$ we have $N \cap W \neq \emptyset$. Then, $(\mathbb{X}, \mathcal{T})$ is not a Hausdorff (separated) topological space.

Exercise 2:

$$\mathcal{T}_{Cof} = \{ O \subset \mathbb{X} : \mathbf{C}_{\mathbb{X}}O \text{ is finite} \} \cup \{\emptyset\}.$$

1. Let us show that the family \mathcal{T}_{Cof} is a topology on \mathbb{X} .

© By definition, $\emptyset \in \mathcal{T}_{Cof}$. Moreover, since $\mathbb{C}_{\mathbb{X}}\mathbb{X} = \emptyset$ (a finite set), we conclude that $\mathbb{X} \in \mathcal{T}_{Cof}$.

② Let $\{O_i : i \in I\}$ be a family of subsets in \mathcal{T}_{Cof} . Then, for each $i \in I$, $\mathfrak{C}_{\mathbb{X}}O_i$ is a finite set. Thus,

$$\mathsf{C}_{\mathbb{X}}\left(igcup_{i\in I}O_{i}
ight)=igcap_{i\in I}\left(\mathsf{C}_{\mathbb{X}}O_{i}
ight),$$

is finite, as it is the intersection of finite sets. Therefore, $\bigcup_{i \in I} O_i \in \mathcal{T}_{Cof}$.

© Let $\{O_i : i = 1, 2, ..., n\}$ be a finite family of subsets in \mathcal{T}_{Cof} . Then, for each i = 1, 2, ..., n, $\mathfrak{l}_{\mathbb{X}}O_i$ is finite. Thus,

$$\mathbb{C}_{\mathbb{X}}\left(\bigcap_{i=1}^{n}O_{i}\right)=\bigcup_{i=1}^{n}\left(\mathbb{C}_{\mathbb{X}}O_{i}\right)$$

is finite, as it is the finite union of finite sets. Therefore, $\bigcap_{i=1}^{n} O_i \in \mathcal{T}_{Cof}$.

From \textcircled{c}_1 , \textcircled{c}_2 and \textcircled{c}_3 we conclude that $(\mathbb{X}, \mathcal{T}_{Cof})$ is a topological space.

2. The closed sets of X are the complements of the open sets. Therefore, the closed sets in \mathcal{T}_{Cof} are the finite subsets of X or X itself.

2

- 3. If A is finite.
 - Cl(A) = A because A is closed.
 - $Int(A) = \emptyset$ Because it is the only open set contained in A (the other open sets are infinite).
 - $\partial(A) = Cl(A) \setminus Int(A) = A \setminus \emptyset = A$.
- 4. If A is infinite.
 - Cl(A) = X Because it is the smallest closed set containing A.
 - Int(A) = A if $\mathbb{C}_{\mathbb{X}}A$ is finite and $Int(A) = \emptyset$ if $\mathbb{C}_{\mathbb{X}}A$ is infinite (Indeed, if $Int(A) \neq \emptyset$, then there exists some $x \in Int(A)$, which implies the existence of an open set $O_x \in \mathcal{T}_{Cof}$ such that $x \in O_x \subset A$. Consequently, we would have $\mathbb{C}_{\mathbb{X}}A \subset \mathbb{C}_{\mathbb{X}}O_x$, contradicting the fact that $\mathbb{C}_{\mathbb{X}}A$ is infinite (since $\mathbb{C}_{\mathbb{X}}O_x$ is finite by the definition)
 - $\partial(A) = Cl(A) \setminus Int(A) = \mathbb{X} \setminus A$ if $\mathfrak{C}_{\mathbb{X}}A$ is finite.
 - $\partial(A) = Cl(A) \setminus Int(A) = \mathbb{X} \setminus \emptyset = \mathbb{X}$ if $\mathfrak{c}_{\mathbb{X}}A$ is infinite.

Exercise 3:

$$\mathcal{T}=\{f^{-1}(G):G\in\mathcal{T}_{\mathbb{Y}}\}.$$
gy on $\mathbb{X}.$

Let us show that \mathcal{T} is a topology on \mathbb{X} .

- © Since \emptyset , $\mathbb{Y} \in \mathcal{T}_{\mathbb{Y}}$, we deduce that $\emptyset = f^{-1}(\emptyset)$, $\mathbb{X} = f^{-1}(\mathbb{Y}) \in \mathcal{T}$.
- © Let $\{O_i : i \in I\}$ be a family of subsets in \mathcal{T} . Then, for each $i \in I$ there exists $G_i \in \mathcal{T}$ such that $O_i = f^{-1}(G_i)$. Thus,

$$\bigcup_{i \in I} O_i = \bigcup_{i \in I} f^{-1}(G_i) = f^{-1} \left(\bigcup_{i \in I} G_i \right).$$

Since $\mathcal{T}_{\mathbb{Y}}$ is topology on \mathbb{Y} , we obtain $\bigcup_{i\in I}G_i\in\mathcal{T}_{\mathbb{Y}}$. Therefore, $\bigcup_{i\in I}O_i\in\mathcal{T}$.

© Let $\{O_i : i = 1, 2, ..., n\}$ be a family of subsets in \mathcal{T} . Then, for each i = 1, 2, ..., n there exists $G_i \in \mathcal{T}$ such that $O_i = f^{-1}(G_i)$. Thus,

$$\bigcap_{i=1}^{n} O_i = \bigcap_{i=1}^{n} f^{-1}(G_i) = f^{-1} \left(\bigcap_{i=1}^{n} G_i \right).$$

Since $\mathcal{T}_{\mathbb{Y}}$ is topology on \mathbb{Y} , we obtain $\bigcap_{i=1}^{n} G_i \in \mathcal{T}_{\mathbb{Y}}$. Therefore, $\bigcap_{i=1}^{n} O_i \in \mathcal{T}$. From $\textcircled{c}_{\mathfrak{Y}}$, $\textcircled{c}_{\mathfrak{Y}}$ and $\textcircled{c}_{\mathfrak{Y}}$ we conclude that $(\mathbb{X}, \mathcal{T})$ is a topological space.

Exercise 4: Let (X, T) be a topological space and A, B two subsets of X. Prove that:

1. Let A be an open subset of \mathbb{X} with $A \subseteq B$. If $x \in A$, then $A \in \mathcal{N}(x)$. Since $A \subset B$, it follows that $B \in \mathcal{N}(x)$ which implies $x \in Int(B)$. Therefore, $A \subseteq Int(B)$.

- 2. Let $A \subseteq B$. If $x \in Int(A)$, then $A \in \mathcal{N}(x)$. Since $A \subseteq B$, it follows that $B \in \mathcal{N}(x)$ which implies $x \in Int(B)$. Therefore, $int(A) \subseteq Int(B)$.
- 3. On one hand, if $x \in Int(A)$, then $Int(A) \in \mathcal{N}(x)$ which implies that $x \in Int(Int(A))$. Therefore,

$$Int(A) \subseteq Int(Int(A)).$$
 (i)

On the other hand

$$Int(Int(A)) \subseteq Int(A)$$
. (by definition). (ii)

From (i) and (ii) we conclude that Int(A) = Int(Int(A)).

4. On one hand, we have

On one hand, we have
$$\begin{cases} A \cap B \subseteq A \\ A \cap B \subseteq B \end{cases} \Rightarrow \begin{cases} Int(A \cap B) \subseteq Int(A) \\ Int(A \cap B) \subseteq Int(B) \end{cases} \Rightarrow Int(A \cap B) \subseteq Int(A) \cap Int(B). \text{ (i)}$$
On the other hand we have

On the other hand we have

$$\left\{ \begin{array}{l} Int(A) \cap Int(B) \subseteq Int(A) \subseteq A \\ Int(A) \cap Int(B) \subseteq Int(B) \subseteq B \end{array} \right. \Rightarrow Int(A) \cap Int(B) \subseteq A \cap B,$$

from which we conclude that

$$Int(A) \cap Int(B) \subseteq Int(A \cap B)$$
 (ii)

From (i) and (ii) we conclude that $Int(A \cap B) = Int(A) \cap Int(B)$.

5. We have,

$$\left\{ \begin{array}{l} Int(A) \subseteq A \\ Int(B) \subseteq B \end{array} \right. \Rightarrow Int(A) \cup Int(B) \subseteq A \cup B \Rightarrow Int(A) \cup Int(B) \subseteq Int(A \cup B).$$

6. We have,

$$A \in \mathcal{N}(B) \iff \exists O \in \mathcal{T}, \ B \subseteq O \subseteq A$$

 $\iff B \subseteq Int(A).$

7. We have,

$$x \in Int(\mathbb{C}_{\mathbb{X}}A) \iff \mathbb{C}_{\mathbb{X}}A \in \mathcal{N}(x)$$

$$\iff \exists O_x \in \mathcal{T}, \ x \in O_x \subset \mathbb{C}_{\mathbb{X}}A$$

$$\iff \exists O_x \in \mathcal{T}, \ O_x \cap A = \emptyset$$

$$\iff x \notin Cl(A)$$

$$\iff x \in \mathbb{C}_{\mathbb{X}}Cl(A)$$

- 8. According to (7), we have $Int\left(\mathbb{C}_{\mathbb{X}}\mathbb{C}_{\mathbb{X}}A\right)=\mathbb{C}_{\mathbb{X}}Cl\left(\mathbb{C}_{\mathbb{X}}A\right)$. Then, $Int(A)=\mathbb{C}_{\mathbb{X}}Cl\left(\mathbb{C}_{\mathbb{X}}A\right)$ which shows that $\mathbb{C}_{\mathbb{X}}Int(A)=Cl\left(\mathbb{C}_{\mathbb{X}}A\right)$.
- 9. We have, $\partial(A) = Cl(A) \cap Cl(\mathfrak{C}_{\mathbb{X}}A)$. Then, $\partial(A)$ is closed because it is the intersection of two closed sets.
- 10. \Longrightarrow) A is clopen set \Longrightarrow $\partial(A) = Cl(A) \setminus Int(A) = A \setminus A = \emptyset$. \Longleftrightarrow)

$$\partial(A) = \emptyset \implies \partial(A) = Cl(A) \setminus Int(A) = \emptyset$$

 $\implies Cl(A) = Int(A)$

 $\implies A \text{ is a clopen set.}$

 $11. \Longrightarrow$)

$$A \text{ is open} \implies \partial(A) = Cl(A) \setminus Int(A) = Cl(A) \setminus A$$

$$\implies \partial(A) \cap A = \emptyset.$$

⇐=)

$$\partial(A) \cap A = \emptyset \implies \left(Cl(A) \cap \mathbb{C}_{\mathbb{X}}(IntA) \right) \cap A = \emptyset$$

$$\implies \mathbb{C}_{\mathbb{X}}(IntA) \cap A = \emptyset. \text{ (because } Cl(A) \cap A \neq \emptyset)$$

$$\implies A \subseteq \mathbb{C}_{\mathbb{X}}\mathbb{C}_{\mathbb{X}}IntA$$

$$\implies A \subseteq IntA$$

$$\implies A = Int(A)$$

$$\implies A \text{ is an open set.}$$

 $12. \Longrightarrow$)

$$A \text{ is closed} \implies \partial(A) = Cl(A) \setminus Int(A) = A \setminus Int(A)$$

$$\implies \partial A \subseteq A.$$

←)

$$\partial A \subseteq A \implies Cl(A) \setminus Int(A) \subseteq A$$

$$\implies Cl(A) \subseteq A \text{ (because } Int(A) \subseteq A)$$

$$\implies Cl(A) = A$$

$$\implies Cl(A) \text{ is a closed set.}$$

Exercise 5:

- \Longrightarrow) Suppose that $\mathcal{T} \subset \mathcal{T}'$. Let $x \in B \in \mathfrak{B} \subset \mathcal{T}$. Then $x \in B \in \mathcal{T}'$ because $\mathcal{T} \subset \mathcal{T}'$, hence $x \in B = \bigcup_{B' \in \mathfrak{B}'} B'$. Therefore, there exists $B' \in \mathfrak{B}'$ such that $B' \subset B$.
- \Leftarrow Let $O \in \mathcal{T}$. On the one hand, for all $x \in O$, there exists $B \in \mathfrak{B}$ such that $x \in B \subset O$. But by hypothesis, there exists $B' \in \mathfrak{B}'$ such that $x \in B' \subset B$. Hence, for all $x \in O$, there exists $B' \in \mathfrak{B}'$ such that $x \in B' \subset O$, which implies

$$\bigcup_{B' \in \mathfrak{B}'} B' \subseteq O. \tag{i}$$

On the other hand,

$$O = \bigcup_{x \in O} \{x\} \subseteq \bigcup_{B' \in \mathfrak{B}'} B'. \tag{ii}$$

Finally, from (i) and (ii), we conclude that $O = \bigcup_{B' \in \mathfrak{B}'} B'$, and therefore $O \in \mathcal{T}'$.

Exercise 6:

- 1. Let $(X, \mathcal{T}_X) = (Y, \mathcal{T}_Y)$ and f(x) = x. Then, for any open set $O \in \mathcal{T}_Y = \mathcal{T}_X$, we have $f^{-1}(O) = O \in \mathcal{T}_X$, since $f^{-1}(O) = O$ by definition of f. Therefore, the preimage of an open set is an open set, implying that f is continuous.
- 2. Let f be a constant function. Then, for each $x \in \mathbb{X}$, we have $f(x) = k \in \mathbb{Y}$. This implies that

$$\begin{cases} f^{-1}(O) = \emptyset, & \text{if } k \notin O, \\ f^{-1}(O) = \mathbb{X}, & \text{if } k \in O, \end{cases}$$

for each $O \in \mathcal{T}_{\mathbb{Y}}$. Therefore, $f^{-1}(O) \in \mathcal{T}_{\mathbb{X}}$, implying that f is continuous.

3. Let $\mathcal{T}_{\mathbb{X}} = \mathcal{T}_{\text{Disc}}$. Then, $f^{-1}(O) \in \mathcal{T}_{\mathbb{X}}$ for each $O \in \mathcal{T}_{\mathbb{Y}}$, since every subset in the discrete topology is open. Thus, f is continuous.

4. Let $\mathcal{T}_{\mathbb{Y}} = \mathcal{T}_{\text{Ind}} = \{\emptyset, \mathbb{Y}\}$. Then we have $f^{-1}(\emptyset) = \emptyset \in \mathcal{T}_{\mathbb{X}}$ and $f^{-1}(\mathbb{Y}) = \mathbb{X} \in \mathcal{T}_{\mathbb{X}}$. Therefore, f is continuous.

Exercise 7:

1. It suffices to show that $\mathcal{C}_{\mathbb{X}}A$ is open in \mathbb{X} .

Let $b \in \mathbb{C}_{\mathbb{X}}A$. Then $f(b) \neq g(b)$, and since \mathbb{Y} is Hausdorff, there exist two open sets $O_1, O_2 \in \mathcal{T}_{\mathbb{Y}}$ such that $f(b) \in O_1$, $g(b) \in O_2$, and $O_1 \cap O_2 = \emptyset$. Thus, $b \in f^{-1}(O_1) \cap g^{-1}(O_2) \in \mathcal{T}_{\mathbb{X}}$ because f and g are continuous and $O_1, O_2 \in \mathcal{T}_{\mathbb{Y}}$. Furthermore, $f^{-1}(O_1) \cap g^{-1}(O_2) \subset \mathbb{C}_{\mathbb{X}}A$, which shows that $\mathbb{C}_{\mathbb{X}}A$ is open. Therefore, A is closed.

2. It suffices to show that $\mathbb{C}_{\mathbb{X}\times\mathbb{Y}}\Gamma_f$ is open in $\mathbb{X}\times\mathbb{Y}$. Let $(x,y)\in\mathbb{C}_{\mathbb{X}\times\mathbb{Y}}\Gamma_f$. Then $(x,y)\notin\Gamma_f$, and thus $y\neq f(x)$. Since \mathbb{Y} is Hausdorff, there exist two open sets $O_1,O_2\in\mathcal{T}_{\mathbb{Y}}$ such that $f(x)\in O_1,y\in O_2$, and $O_1\cap O_2=\emptyset$. Since f is continuous, $x\in O_3=f^{-1}(O_1)\in\mathcal{T}_{\mathbb{X}}$. Hence, $(x,y)\in O_3\times O_2\subseteq\mathbb{C}_{\mathbb{X}\times\mathbb{Y}}\Gamma_f$, which shows that $\mathbb{C}_{\mathbb{X}\times\mathbb{Y}}\Gamma_f$ is open. Therefore, Γ_f is closed.

Exercise 8: Let $f: (\mathbb{X}, \mathcal{T}_{\mathbb{X}}) \longrightarrow (\mathbb{Y}, \mathcal{T}_{\mathbb{Y}})$ an homeomorphism

1. Is f open?

Let $O \in \mathcal{T}_{\mathbb{X}}$ and $g = f^{-1}$. Then $g^{-1}(O) = f(O)$, which is open since $g = f^{-1}$ is continuous. Therefore, f is an open map.

2. Is f closed?

Let $F \in \mathcal{T}_{\mathbb{X}}$ and $g = f^{-1}$. Then $g^{-1}(F) = f(F)$, which is closed since $g = f^{-1}$ is continuous. Therefore, f is a closed map.