وزارة التعليم العالي والبحث العلمي

Sétif 1 University-Ferhat ABBAS Faculty of Sciences Department of Mathematics

Final Exam in Topology for Second-Year LMD Mathematics Students (2024/2025)

Group:	Last Name:	First Name:	
Exercise 1	(7.5 pts): Let $(X \mathcal{T}_{\mathbb{V}})$) be a topological space and $A \subset \mathbb{X}$. Complete the follow	– ving
expressions:	200 (22) /A	y 20 0 topological space and 11 C 121 complete the 10110.	,0
1. Any m	ember of $\mathcal{T}_{\mathbb{X}}$ is called		· • • • •
2. The to	pology induced by Eucl	idean metric on $\mathbb R$ is called	
3. The to	pological space in which	all the subsets of $\mathbb X$ are clopen is called	
4. If <i>Int</i> ($\left(C_{\mathbb{X}} A \right) = C_{\mathbb{X}} A$, then A is	(open/close	ed).
5. The to	pology in which every fi	nite sets are closed is called	
6. If <i>Cl</i> (A(A) = X, then A is		
7. If A is	a neighborhood of each	of its points, then A is	
8. The lan	rgest open set contained	l in A is called	
9. The se	t which is the intersection	on of $Cl(A)$ and $Cl\left(\complement_{\mathbb{X}}A\right)$ is called	
10. The in	tersection of all closed s	ets containing A is called	
Exercise 2	(8.5 pts):		

- 1. Recall the definition of a metric space.
- 2. Let $d: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a function defined by:

$$d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|.$$

- (a) Prove that d is indeed a metric.
- (b) Provide an example of an open ball of radius 1 centered at (0,0) for this metric.
- 3. Prove that every metric space is a topological space.

Exercise 3 (4pts):

- $1. \ \,$ Recall the definition of a complete metric space.
- 2. Show that every complete subset in a metric space $(\mathbb{X}, d_{\mathbb{X}})$ is closed.

وزارة التعليم العالبي والبحث العلم

Sétif 1 University-Ferhat ABBAS **Faculty of Sciences** Department of Mathematics

FACULTY OF SCIENCES

Final Exam in Topology for Second-Year LMD Mathematics Students (2024/2025)

Group:	Last Name:	First Name:		
Exercise 1	(7.5 pts): Let $(\mathbb{X}, \mathcal{T}_{\mathbb{X}})$ be a topological	space and $A \subset \mathbb{X}$. Complete the following		
expressions.				
1. Any me	ember of $\mathcal{T}_{\mathbb{X}}$ is calledopen ball) set (0,75)		
2. The to	pology induced by Euclidean metric on \mathbb{F}	R is calledusual topology		
3. The topological space in which all the subsets of X are clopen is called discrete topological space.				
4. If $Int(C_{\mathbb{X}}A) = C_{\mathbb{X}}A$, then A isclosed				
5. The topology in which every finite sets are closed is calledcofinite topology				
6. If <i>Cl</i> (<i>A</i>	A(A) = X, then A isdense is	n X(2, +1)		
7. If A is a neighborhood of each of its points, then A isopen o_{r} $+$ \cdot				
8. The largest open set contained in A is calledinterior of A interior of A				
9. The set which is the intersection of $Cl(A)$ and $Cl(\mathfrak{C}_{\mathbb{X}}A)$ is calledboundary of A. $\mathfrak{C}_{\mathbb{X}}A$				
10. The in	tersection of all closed sets containing A	is calledclosure of Aclosure		
Exercise 2	(8.5 pts):			

1. Recall the definition of a metric space:

\$

Definition 1. A metric space is a pair (X,d), where X is a set and $d: X \times X \to \mathbb{R}$ is a function, called a metric, that satisfies the following properties for all $x, y, z \in \mathbb{X}$:

- (a) Non-negativity: $d(x,y) \ge 0$, and $d(x,y) = 0 \iff x = y$. (b) Symmetry: d(x,y) = d(y,x).
- (c) Triangle inequality: $d(x,z) \leq d(x,y) + d(y,z)$
- 2. Let $d: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a function defined by:

$$d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|.$$

(a) Prove that d is a metric on \mathbb{R}^2 :

We need to check the three properties of a metric:

i. Non-negativity:

 $|x_1 - x_2| \ge 0$ and $|y_1 - y_2| \ge 0$ \Rightarrow $d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2| \ge 0$. Moreover, $d((x_1, y_1), (x_2, y_2)) = 0 \iff |x_1 - x_2| = 0$ and $|y_1 - y_2| = 0 \implies x_1 = x_2$ and $y_1 = y_2$.

ii. Symmetry:

 $d((x_1,y_1),(x_2,y_2)) = |x_1-x_2| + |y_1-y_2| = |x_2-x_1| + |y_2-y_1| = d((x_2,y_2),(x_1,y_1)).$

iii. Triangle inequality:

Let $z = (x_3, y_3)$. We have:

$$d((x_1, y_1), (x_3, y_3)) = |x_1 - x_3| + |y_1 - y_3|.$$

Using the triangle inequality for absolute values:

$$|x_1 - x_3| \le |x_1 - x_2| + |x_2 - x_3| \quad \text{and} \quad |y_1 - y_3| \le |y_1 - y_2| + |y_2 - y_3|.$$

Adding these inequalities gives:

$$d((x_1,y_1),(x_3,y_3)) \le d((x_1,y_1),(x_2,y_2)) + d((x_2,y_2),(x_3,y_3)).$$

Therefore, d satisfies all the properties of a metric.

(b) Give an example of an open ball of radius 1 centered at (0,0) for this metric:

An open ball of radius 1 centered at (0,0) is defined as:

$$B((0,0),1) = \{(x,y) \in \mathbb{R}^2 : d((0,0),(x,y)) < 1\}.$$

Using the definition of d((0,0),(x,y)) = |x| + |y|, the open ball becomes:

$$B((0,0),1) = \{(x,y) \in \mathbb{R}^2 : |x| + |y| < 1\}.$$

This represents a diamond-shaped region in the plane, bounded by the lines:

$$x + y = 1$$
, $x - y = 1$, $-x + y = 1$, $-x - y = 1$.

3. Prove that every metric space is a topological space:

Given a metric space (\mathbb{X},d) , we can define a topology on \mathbb{X} as follows: - A subset $U\subseteq\mathbb{X}$ is open if for every $x\in U$, there exists $\epsilon>0$ such that the open ball $B(x,\epsilon)=\{y\in\mathbb{X}:d(x,y)<\epsilon\}$ is contained in U.

Proof:

(a) The empty set and X are open:

The empty set contains no points, so the condition is satisfied vacuously. For \mathbb{X} , every point $x \in \mathbb{X}$ has $B(x, \epsilon) \subseteq \mathbb{X}$.

(b) Arbitrary unions of open sets are open:

Let $\{U_{\alpha}\}_{{\alpha}\in I}$ be a family of open sets. If $x\in\bigcup_{{\alpha}\in I}U_{\alpha}$, then $x\in U_{\alpha_0}$ for some $\alpha_0\in I$. Since U_{α_0} is open, there exists $\epsilon>0$ such that $B(x,\epsilon)\subseteq U_{\alpha_0}\subseteq\bigcup_{{\alpha}\in I}U_{\alpha}$.

(c) Finite intersections of open sets are open:

Let U_1, U_2, \ldots, U_n be open sets. If $x \in \bigcap_{i=1}^n U_i$, then for each i, there exists $\epsilon_i > 0$ such that $B(x, \epsilon_i) \subseteq U_i$. Let $\epsilon = \min\{\epsilon_1, \epsilon_2, \ldots, \epsilon_n\}$. Then $B(x, \epsilon) \subseteq \bigcap_{i=1}^n U_i$.

Thus, the topology defined by the metric satisfies the axioms of a topological space. Hence, every metric space is a topological space.

Exercise 3 (4pts):

1. Recall the definition of a complete metric space.

2)

Definition 2. A metric space (\mathbb{X},d) is said to be complete if every Cauchy sequence in (\mathbb{X},d) converges to a limit that is also in \mathbb{X} .

2. Show that every complete subset in a metric space (X, d_X) is closed.

Let A be a complete subset of X, and let $x \in Ct(A)$. Then there exists a sequence (x_n) of elements in A such that $x_n \to x$ (see Proposition (2.4)). Since (x_n) is a Cauchy sequence in A, and A is complete, it follows that $x \in A$. This shows that A is closed.