وزارة التعليم العالى والبحث العل

Sétif 1 University-Ferhat ABBAS **Faculty of Sciences Department of Mathematics**

Setif 1 University - Ferhat ABBAS

FACULTY OF SCIENCES

Introduction to Metric and Topological Spaces

Mathematics Bachelor's Degree - LMD - 3rd Semester

Series 6: Compact Spaces

Exercise 1: Using (only) the definition of compactness, show that \mathbb{R} , $[0, +\infty[$, and [0,1[are not compact in $(\mathbb{R},|\cdot|)$.

Exercise 2: Determine whether the set A is compact in \mathbb{X} in the following cases:

- 1) $A = \mathbb{Q}, \mathbb{X} = \mathbb{R},$
- $2) A = \left\{ \frac{1}{n} : n \in \mathbb{N}^* \right\}, \mathbb{X} = \mathbb{R},$
- 3) A is an infinite set in (X, δ) ,
- 4) $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}, X = \mathbb{R}^2,$
- **5)** $A = \left\{ (x, y) \in \mathbb{R}^2 : x \ge 1, \ 0 \le y \le \frac{1}{x} \right\}, \ \mathbb{X} = \mathbb{R}^2,$
- **6)** $A = \left\{ \left(x, \sin \frac{1}{x} \right) \in \mathbb{R}^2 : 0 < x \le 1 \right\}, \, \mathbb{X} = \mathbb{R}^2.$

Exercise 3: Consider the metric space (\mathbb{Q}, d) , where d(x, y) = |x - y|, and the set $A = \{x \in \mathbb{Q} : 2 < x^2 < 3\}$. Show that A is closed and bounded but not compact.

Exercise 4: Let $(\mathbb{X}, \mathcal{T}_{\mathbb{X}})$ and $(\mathbb{Y}, \mathcal{T}_{\mathbb{Y}})$ be two topological spaces, where $(\mathbb{Y}, \mathcal{T}_{\mathbb{Y}})$ is separated, and let $f:(\mathbb{X},\mathcal{T}_{\mathbb{X}})\longrightarrow(\mathbb{Y},\mathcal{T}_{\mathbb{Y}})$ be a continuous map. Show that if B is a compact subset of \mathbb{Y} , then $f^{-1}(B)$ is closed. Find an example that shows that $f^{-1}(B)$ is not necessarily compact.

Exercise 5: Let (X, \mathcal{T}) be a separated topological space. Prove the following:

- 1. The finite union of compact sets in X is compact.
- 2. The arbitrary union of compact sets in X is not necessarily compact.

Exercise 6: Show that the discrete topological space (X, \mathcal{T}_{disc}) is compact if and only if X is finite.

Let (X, d) be a metric space and $A \subset X$. Prove the following:

- 1. If A is precompact, then Cl(A) is also precompact.
- 2. If A is precompact, then A is bounded.

Exercise 8: Show that every finite subset of $(\mathbb{R}, |\cdot|)$ is compact.

Exercise 9: Let (\mathbb{X}, d) be a metric space, and let $A, B \subset \mathbb{X}$ such that $A \cap B = \emptyset$. Prove the following:

- 1. If A is compact and B is closed, then dist(A, B) > 0.
- 2. Is it true that $dist(A, B) \neq 0$ if A and B are both closed?

