وزارة التعليم العالى والبحث العلمي

Sétif 1 University-Ferhat ABBAS Faculty of Sciences Department of Mathematics

Introduction to Metric and Topological Spaces

Mathematics Bachelor's Degree - LMD - 3rd Semester

Solution of series 6: Compact Spaces

Exercise 1: Recall that a subset $A \subset \mathbb{R}$ is compact if every open cover of A has a finite subcover, or equivalently, if every sequence in A has a convergent subsequence. In the context of metric spaces, compactness can also be characterized by the property that every sequence in A has a convergent subsequence whose limit lies in A, or by the fact that A is closed and bounded. We will use this definition to show that the sets \mathbb{R} , $[0, +\infty)$, and (0,1) are not compact.

1. \mathbb{R} is not compact

Let $\mathcal{K} = \{]-n, n[: n \in \mathbb{N}\}$, where each (-n, n) is an open interval centered at 0 and has radius n.

(a) \mathcal{K} is an open cover of \mathbb{R}

First, observe that the union of all sets in \mathcal{K} covers \mathbb{R} , since for any $x \in \mathbb{R}$, there exists some $n \in \mathbb{N}$ such that $x \in (-n, n)$. Specifically, for any $x \in \mathbb{R}$, we can choose $n \geq |x|$, and it follows that $x \in (-n, n)$. Thus, \mathcal{K} is indeed an open cover of \mathbb{R} .

(b) No finite subcover exists

Suppose, for the sake of contradiction, that there is a finite subcover $\mathcal{K}_0 = \{(-n_1, n_1), (-n_2, n_2), \dots, (-n_k, n_k)\}$ of \mathcal{K} . Since the subcover is finite, we have a finite number of intervals. Let $N = \max\{n_1, n_2, \dots, n_k\}$. This means that \mathcal{K}_0 covers the set (-N, N), but the interval (N, ∞) is not covered by \mathcal{K}_0 . For example, the point N+1 is not contained in any of the sets $(-n_i, n_i)$ because $N+1>n_i$ for all i.

This contradiction shows that \mathbb{R} cannot be covered by a finite number of sets from \mathcal{K} .

2. $[0, +\infty)$ is not compact

The family $\mathcal{K} = \{(-1, n) : n \in \mathbb{N}\}$ is an open cover of $[0, +\infty)$ that has no finite subcover of $[0, +\infty)$, because for any finite subfamily $\mathcal{K}_0 = \{(-1, n_i) : i = 1, \dots, p\}$ of \mathcal{K} , we have

$$\bigcup_{i=1}^{p} (-1, n_i) = (-1, N),$$

where $N = \max_{1 \leq i \leq p} n_i$. Thus, $[0, +\infty)$ is not covered by \mathcal{K}_0 . It follows that $[0, +\infty)$ is not compact.

3. (0,1) is not compact

The family $\mathcal{K} = \left\{ \left(\frac{1}{n}, 1 \right) : n \in \mathbb{N}^* \right\}$ is an open cover of (0, 1) that has no finite subcover of (0, 1), because for any finite subfamily $\mathcal{K}_0 = \left\{ \left(\frac{1}{n_i}, 1 \right) : i = 1, \dots, p \right\}$ of \mathcal{K} , we have

$$\bigcup_{i=1}^{p} \left(\frac{1}{n_i}, 1\right) = \left(\frac{1}{N}, 1\right),\,$$

where $N = \max_{1 \leq i \leq p} n_i$. Thus, $[0, +\infty)$ is not covered by \mathcal{K}_0 . It follows that $[0, +\infty)$ is not compact.

Exercise 2:

- 1. $A = \mathbb{Q}$ is not compact in $\mathbb{X} = \mathbb{R}$ because it is not closed.
- 2. $A = \left\{ \frac{1}{n} : n \in \mathbb{N}^* \right\}$ is not compact in $\mathbb{X} = \mathbb{R}$ because it is not closed.
- 3. The family $\mathcal{K} = \{\{x\} : x \in A\}$ is an open cover of A

$$A = \bigcup_{x \in A} \{x\}$$

that has no finite subcover of A, since any finite subfamily $\mathcal{K}_0 = \{\{x_i\} : i = 1, \dots, p\}$ does not cover A (as A is infinite). Therefore, A is not compact.

- 4. $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ is compact in $\mathbb{X} = \mathbb{R}^2$ because it is bounded and closed.
- 5. $A = \{(x,y) \in \mathbb{R}^2 : x \ge 1, \ 0 \le y \le \frac{1}{x} \}$ is not compact in $\mathbb{X} = \mathbb{R}^2$ because it is unbounded.

6. $A = \{(x, \sin \frac{1}{x}) \in \mathbb{R}^2 : 0 < x \le 1\}$ is not compact in $\mathbb{X} = \mathbb{R}^2$ because it is not closed. Indeed, the sequence $(\frac{1}{n\pi}, 0)$ belongs to A and converges to (0, 0), but $(0, 0) \notin A$.

Exercise 3: Consider the metric space (\mathbb{Q}, d) , where d(x, y) = |x - y|, and the set

$$A = \left\{ x \in \mathbb{Q} : 2 < x^2 < 3 \right\}.$$

- 1. It is clear that A is bounded.
- 2. We have

$$A = \left\{ x \in \mathbb{Q} : -\sqrt{3} < x < -\sqrt{2} \right\} \cup \left\{ x \in \mathbb{Q} : \sqrt{2} < x < \sqrt{3} \right\}.$$

Let $A_1 = [-\sqrt{3}, -\sqrt{2}] \cap \mathbb{Q}$ and $A_2 = [\sqrt{2}, \sqrt{3}] \cap \mathbb{Q}$. Then, A_1 and A_2 are closed in \mathbb{Q} . Moreover, since $A = A_1 \cup A_2$, it follows that A is closed in \mathbb{Q} .

3. Let $G = \{G_n : n \ge 1\}$, where

}, where
$$G_n = \left\{ x \in \mathbb{Q} : 2 + \frac{1}{n} < x^2 < 3 - \frac{1}{n} \right\}.$$

Then, G is an open cover of A that has no finite subcover of A. Therefore, A is not compact.

Exercise 4: Let $(\mathbb{X}, \mathcal{T}_{\mathbb{X}})$ and $(\mathbb{Y}, \mathcal{T}_{\mathbb{Y}})$ be two topological spaces, where $(\mathbb{Y}, \mathcal{T}_{\mathbb{Y}})$ is separated, and let $f: (\mathbb{X}, \mathcal{T}_{\mathbb{X}}) \longrightarrow (\mathbb{Y}, \mathcal{T}_{\mathbb{Y}})$ be a continuous map.

Since B is compact in \mathbb{Y} , which is a Hausdorff space, it follows that B is closed. Consequently, $f^{-1}(B)$ is closed because f is a continuous function.

Counterexample: Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = 0, \quad \forall x \in \mathbb{R}.$$

Let $B = \{0\}$. Then, B is compact, but

$$f^{-1}(B) = \mathbb{R},$$

is not compact.

Exercise 5: Let (X, \mathcal{T}) be a separated topological space.

1. It is sufficient to show that the union of two compact sets is compact. Let K_1 and K_2 be two compact sets. Define $K = K_1 \cup K_2$, and let $\{O_i : i \in I\}$ be an open cover of K. Then, $\{O_i : i \in I\}$ is also an open cover of K_1 and K_2 .

Since K_1 and K_2 are compact, there exist finite subsets $I_1, I_2 \subset I$ such that

$$K_1 \subseteq \bigcup_{i \in I_1} O_i$$
 and $K_2 \subseteq \bigcup_{i \in I_2} O_i$.

Therefore,

$$K = K_1 \cup K_2 \subseteq \bigcup_{i \in I_1 \cup I_2} O_i.$$

Since $I_1 \cup I_2$ is finite, this shows that K is compact.

2. Consider the family $\{K_n = [1, n+1] : n \ge 1\}$. It is clear that each K_n is compact for all $n \ge 1$, but the union

$$\bigcup_{n\geq 1} K_n = [1, +\infty),$$

is not compact.

Exercise 6:

 \Longrightarrow) Suppose that the discrete space $(\mathbb{X}, \mathcal{T}_{\text{disc}})$ is compact. By definition, every subset of \mathbb{X} is open. Consider the open cover $\mathcal{U} = \{\{x\} \mid x \in \mathbb{X}\}$, which clearly covers \mathbb{X} . By compactness, there must exist a finite subcover, meaning there are finitely many elements x_1, x_2, \ldots, x_n such that

$$\mathbb{X} = \{x_1, x_2, \dots, x_n\}.$$

Thus, X is finite.

 \iff Suppose that \mathbb{X} is finite. Let \mathcal{U} be an arbitrary open cover of \mathbb{X} . Since \mathbb{X} is finite, the elements of \mathcal{U} already form a finite collection, and there exists a finite subcover that still covers \mathbb{X} . Hence, $(\mathbb{X}, \mathcal{T}_{disc})$ is compact.

Therefore, a discrete space is compact if and only if it is finite.

Exercise 7: Let (\mathbb{X}, d) be a metric space and $A \subset \mathbb{X}$.

1. Suppose that A is precompact. Then, for every r > 0, there exist $x_1, x_2, \ldots, x_n \in A$ such that

$$A \subseteq \bigcup_{i=1}^{n} B(x_i, r).$$

If $y \in Cl(A) \setminus A$, then $B(y,r) \cap A \neq \emptyset$. Let $z \in B(y,r) \cap A$, so there exists an index $1 \le k \le n$ such that $z \in B(y,r) \cap B(x_k,r)$. It follows that

$$d(y, x_k) \le d(y, z) + d(z, x_k) < r + r = 2r.$$

Therefore, $y \in B(x_k, 2r)$, which shows that

$$Cl(A) \subseteq \bigcup_{i=1}^{n} B(x_i, 2r).$$

Hence, Cl(A) is precompact.

2. If A is precompact, then for every r > 0, there exist $x_1, x_2, \ldots, x_n \in A$ such that

$$A \subseteq \bigcup_{i=1}^{n} B(x_i, r).$$

Thus, the diameter of A satisfies

satisfies
$$\operatorname{diam}(A) \leq \sum_{i=1}^{n} B(x_i, r) = 2nr,$$
 sounded.

which implies that A is bounded.

Exercise 8: Let $A = \{a_1, a_2, \dots, a_n\}$ be a finite subset of \mathbb{R} , and define

$$M = \max\{|a_1|, |a_2|, \dots, |a_n|\}.$$

Then, A is bounded because for all $1 \le i \le n$, we have $|a_i| \le M$.

Moreover, A is closed since it can be written as

$$A = \bigcup_{i=1}^{n} \{a_i\},\,$$

which is a finite union of closed sets in \mathbb{R} .

Since A is both bounded and closed in \mathbb{R} , it is compact.

Exercise 9: Let (\mathbb{X}, d) be a metric space, and let $A, B \subset \mathbb{X}$ such that $A \cap B = \emptyset$.

1. Suppose that A is compact and B is closed. Then, we have Cl(A) = A and Cl(B) = B. Consider the function $f: A \to \mathbb{R}$ defined by

$$f(x) = d(x, B), \quad \forall x \in A.$$

Since f is continuous on the compact set A, it is bounded and attains its minimum on A. Hence, there exists $a \in A$ such that

$$f(a) = \inf_{x \in A} d(x, B) = d(A, B).$$

Since $A \cap B = \emptyset$, we deduce that d(A, B) > 0, because if d(A, B) = 0, then

$$f(a) = d(a, B) = 0,$$

which implies that $a \in Cl(B) = B$, contradicting $A \cap B = \emptyset$.

2. Consider the two sets

$$A = \{(x, y) \in \mathbb{R}^2 \mid xy = 1\}$$

and

$$B = \{(x, y) \in \mathbb{R}^2 \mid y = 0\}.$$

Both A and B are closed in \mathbb{R}^2 , but

$$d(A,B) = 0$$

since
$$y = \frac{1}{x} \to 0$$
 as $x \to +\infty$.