وزارة التعليم العالى والبحث العلمي

Sétif 1 University-Ferhat ABBAS Faculty of Sciences Department of Mathematics

Introduction to Metric and Topological Spaces

Mathematics Bachelor's Degree - LMD - 3rd Semester

Solution of series 7: Connected Spaces

Exercise 1: Let $f : \mathbb{X} \to \mathbb{Y}$ be a continuous function. We prove the following contrapositive statement:

If f(X) is disconnected, then X is disconnected.

Suppose that f(X) is disconnected. Then there exists a non-empty clopen subset $G \subsetneq f(X)$. Since f is continuous, the non-empty preimage $f^{-1}(G)$ is clopen in X and $f^{-1}(G) \neq X$, which shows that X is disconnected.

Since we have proven the contrapositive, it follows that if \mathbb{X} is connected, then $f(\mathbb{X})$ must also be connected.

Exercise 2: Let (\mathbb{X}, d) be a metric space. Suppose that $f : \mathbb{X} \to \mathbb{R}$ is a continuous function such that |f(x)| = 1 for all $x \in \mathbb{X}$. We prove the following contrapositive statement:

If f is not constant, then \mathbb{X} is disconnected.

If f is not constant, then its image is

$$f(X) = \{-1, 1\}.$$

This implies that

$$X = f^{-1}(\{-1\}) \cup f^{-1}(\{1\}).$$

Since f is continuous, the preimages $f^{-1}(\{-1\})$ and $f^{-1}(\{1\})$ are closed in X.

Moreover, these two sets are disjoint and non-empty, forming a partition of X into two disjoint closed sets. This shows that X is not connected.

Since we have proven the contrapositive, it follows that if X is connected, then f must be constant.

Exercise 3: Suppose that X is path-connected and that $g: X \to \{0, 1\}$ is a continuous function. If g is not constant, then there exist points $x_1, x_2 \in X$ such that $g(x_1) = 0$ and $g(x_2) = 1$. Let $f: [0, 1] \to X$ be a path in X such that

$$f(0) = x_1$$
 and $f(1) = x_2$.

Then the composition $g\circ f:[0,1]\to\{0,1\}$ is continuous and surjective.

However, the interval [0,1] is connected, while $\{0,1\}$ is a disconnected space. This contradicts the fact that a continuous image of a connected space must also be connected.

Thus, our initial assumption that g is not constant must be false, which means that g must be constant. Then, \mathbb{X} is connected.

Exercise 4: We have h(0) = f(0) = x, $h\left(\frac{1}{2}\right) = f(1) = y = g(0)$, and h(1) = g(1) = z. Moreover, since f(2t) and g(2t-1) are compositions of continuous functions, they are themselves continuous, which implies that h is also continuous. Then, the function h is a path from x to z in \mathbb{X} .

path from x to z in \mathbb{X} . **Exercise 5:** Since $f([a,b]) \subset [a,b]$, it follows that $f(a) \geqslant a$ and $f(b) \leqslant b$. Define g(x) = f(x) - x. Then, g is continuous, and we have $g(a) \geqslant 0$ and $g(b) \leqslant 0$. Thus, by the intermediate value theorem, there exists $c \in (a,b)$ such that g(c) = 0, or equivalently, f(c) = c.

Exercise 6: Let $y_1, y_2 \in Y$. Since f is surjective, there exist $x_1, x_2 \in X$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Let $g: [0,1] \to X$ be a continuous path in X from x_1 to x_2 . Then, the composition $f \circ g: [0,1] \to Y$ is a continuous path in Y from y_1 to y_2 . Thus, Y is path-connected.

Exercise 7: Suppose that f, g are two arbitrary elements of C([0, 1]). We define a path $h: [0, 1] \to C([0, 1])$ by

$$h(t) = tf + (1 - t)g.$$

Then, for each $t \in [0, 1]$, the function h(t) is continuous, hence it belongs to C([0, 1]). Moreover, the function h is continuous since

$$d_{\infty}(h(t), h(s)) = \sup_{x \in [0,1]} |(t-s)f(x) + (s-t)g(x)| \le |t-s|(M_f + M_g),$$

where $|f(x)| \leq M_f$ and $|g(x)| \leq M_g$ for all $x \in [0, 1]$. For any $\varepsilon > 0$, setting $\delta = \frac{\varepsilon}{M_f + M_g}$, we obtain $d_{\infty}(h(t), h(s)) < \varepsilon \quad \text{whenever} \quad |t - s| < \delta.$

Finally, since h(0) = g and h(1) = f, the function h is a continuous path in C([0,1]) from g to f. Thus, C([0,1]) is path-connected and therefore connected.

Exercise 8: Consider the continuous function $f:A\cup B\to\{0,1\}$ with the discrete metric. Since A and B are connected, the restrictions $f|_A=c_A:A\to\{0,1\}$ and $f|_B=c_B:B\to\{0,1\}$ are constant and take the value 0 or 1. Let $f|_A(x)=c_A, \forall x\in A$ and $f|_B(x)=c_B, \forall x\in B$.

Note that the closure Cl(A) is also connected, since A is connected and $f(Cl(A)) = \{c_A\}$. Let $b \in Cl(A) \cap B$, then $f(b) = c_A = c_B$. Thus, $f(A \cup B) = c_A = c_B$, which implies that f is constant on $A \cup B$, proving that $A \cup B$ is connected.

Sétif 1 University-Ferhat ABBAS-2024/2025