

Maths1 1st guided works

Exercise 1.

1 Consider the following sets

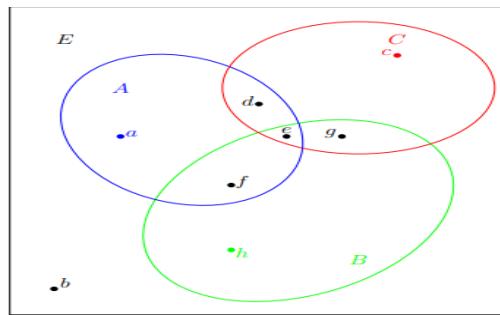
$$A = \{1, 3, 7, 9, 12\}, \quad B = \{1, 3, 2\}, \quad C = \{3, 4, 7, 9\}, \quad D = \{3, 1\}.$$

Describe the following sets and their cardinals: $A \cap B$, $A \setminus B$, $A \Delta B$, $D \times C$, ${}^*B \cap C$, $\mathfrak{C}_D(A)$, ${}^*D \cup A$, $\mathcal{P}(C)$.

2 Describe the following sets:

$$F = [-2, 1[\cap] - \infty, 0], \quad {}^*E = [-2, 1[\cup] - \infty, 0], \quad {}^*G = [-2, 1[\Delta] - \infty, 0], \quad {}^*H = \mathfrak{C}_{\mathbb{R}}(F).$$

Exercise 2: Consider the following diagram, which contains three subsets A , B , C of a set E and the elements a, b, c, d, e, f, g, h of E



Determine whether the following statements are true or false

- 1) $g \in A \cap B$
- 2) $g \in \bar{A} \cap \bar{B}$
- 3) $g \in \bar{A} \cup \bar{B}$
- 4) $f \in \bar{A}$
- 5) $e \in \bar{A} \cap \bar{B} \cap \bar{C}$.
- 6) $\{h, b\} \subset \bar{A} \cap \bar{B}$
- 7) $\{a, f\} \subset A \cup C$.

Exercise 3: If we have $C \subset A \cup B$, is it because $C \subset A$ or $C \subset B$?

Exercise 4: Let A, B, C be three subsets of the set E , for $X \subset E$, denoted by X^c the complement of X in E .

Prove the following Morgan's laws :

$$1. (A \cap B) \cup C = (A \cup C) \cap (B \cup C) \quad *2. (A^c)^c = A.$$

Exercise 5 : *Find the set of parts of the set $E = \{a, b, c, d\}$.

Exercise 6 : Let E and F be two sets, and let A and C be subsets of E and D, B be two subsets of F . Prove it

$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D).$$

Exercise 7: Determine if the relations are reflexive, symmetric, transitive, or antisymmetric.

(1) $E = \mathbb{Z}$ and $x \mathcal{R} y \Leftrightarrow x = -y$

*(2) $E = \mathbb{R}$ and $x \mathcal{R} y \Leftrightarrow \cos^2 x + \sin^2 y = 1$

*(3) $E = \mathbb{N}$ and $x \mathcal{R} y \Leftrightarrow \exists p, q \geq 1, y = px^q$. Where p and q are natural numbers.

Exercise 8: Let \mathcal{R} be the relation defined on \mathbb{R}^2 by: $(x_1, y_1) \mathcal{R} (x_2, y_2) \Leftrightarrow y_1 = y_2$.

(1) Show that \mathcal{R} is an equivalence relation.

(2) Determine the equivalence class of $(1, 0)$.

*(3) Same questions for the relation \mathcal{R} defined on \mathbb{R}^2 by: $(x_1, y_1) \mathcal{R} (x_2, y_2) \Leftrightarrow x_1^2 + y_1^2 = x_2^2 + y_2^2$.

Exercise 9: Let \mathcal{R} be the relation defined on \mathbb{N}^* by : $n \mathcal{R} m \Leftrightarrow \exists k \in \mathbb{N}^* : n = km..$

(1) Show that \mathcal{R} is a relation of order

(2) Is the order total?

Exercise 10:

1. Let the function be $f : \mathbb{R} \rightarrow \mathbb{R}$, where $x \mapsto x^2$ and let be $A = [-1, 4]$ find :

- The direct image of the set A by application f .

- The reciprocal (inverse) image of the set A by application f .

2. *Let the function be $\sin : \mathbb{R} \rightarrow \mathbb{R}$.

- What is the direct image of the set \mathbb{R} , the set $[0, 2\pi]$ and the set $[0, \pi/2]$?

- What is the inverse image of set $[0, 1]$, the set $[3, 4]$ and the set $[1, 2]$?

Exercise 11: Show that the following functions are maps and then check whether they are injective, surjective or bijective

$$f_1 : \mathbb{Z} \rightarrow \mathbb{Z}, n \mapsto 2n, \quad f_2 : \mathbb{Z} \rightarrow \mathbb{N}, n \mapsto 4n^2 + 5$$

$$f_3 : \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^2, \quad f_4 : \mathbb{R} \rightarrow \mathbb{R}^+, x \mapsto x^2.$$

Exercise 12: Let the functions f and g defined from \mathbb{N} to \mathbb{N} by the following:

$$f(x) = 2x \text{ and } g(x) = \begin{cases} \frac{x}{2}, & \text{If } x \text{ is even} \\ 0, & \text{If } x \text{ is odd} \end{cases}$$

Find $g \circ f$ and $f \circ g$. Are the functions f and g injective, surjective or bijective?

Exercise 13: Show by recurrence

1. For any $n \in \mathbb{N}$: $5n^3 + n$ is divisible by 6. (Indication $n(n+1) = 2p$, $p \in \mathbb{N}$).

2. *For any $n \in \mathbb{N}$: $2^n > n$.

3. *If $x \neq 1$, $x \in \mathbb{R}$, $n \geq 1$: $1 + x + x^2 + \dots + x^{n-1} = \frac{1 - x^n}{1 - x}$.

Instruction. The questions mentioned by (*) are left to the students.