

Chapter 2

Structure of real numbers field \mathbb{R}

Dr L.Derbal

The aim of this chapter is to introduce axiomatically the set of Real numbers

2.1 Set of rational numbers \mathbb{Q} .

2.1.1 Integers numbers

We take for granted the system \mathbb{N} of natural numbers $\mathbb{N} = \{1, 2, 3, 4, \dots\}$. In general the equation $x + a = 0$ is not solvable in \mathbb{N} whose case or a is positive. In order to make this equation solvable, we must enlarge the set $\mathbb{N} = \mathbb{Z}_+$ by introducing negative integers as unique solutions of the equations $a + x = 0$ (existence of the additive inverse) for each $a \in \mathbb{N}$. Our extended system, which is denoted by \mathbb{Z} , now contains all integers and can be arranged in order

$$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\} = \mathbb{N} \cup \{0\} \cup \{-a : a \in \mathbb{N}\}.$$

theorem 2.1.1 (Fundamental theorem of arithmetic) *Every positive integer except 1 can be expressed uniquely as a product of primes.*

2.1.2 Rational Numbers

Let $a \in \mathbb{Z}$, $b \in \mathbb{Z}$. The equation

$$ax = b \tag{1}$$

need not have a solution $x \in \mathbb{Z}$. In order to solve (1) (for $a \neq 0$) we have to enlarge our system of numbers again so that it includes fractions $\frac{b}{a}$ (existence of multiplicative inverse in $\mathbb{Z} - \{0\}$). This motivates the following definition.

Definition 2.1.2 *The set of rational numbers (or rationals) \mathbb{Q} is the set*

$$\mathbb{Q} = \{r = \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N}, \text{hcf}(p, q) = 1\}.$$

Here $\text{hcf}(p, q)$ stands for the highest common factor of p and q , so when writing $\frac{p}{q}$ for a rational we often assume that the numbers p and q have no common factor greater than 1.

Definition 2.1.3 *Let $b \in \mathbb{N}$, $d \in \mathbb{N}$. Then*

$$\left(\frac{a}{b} > \frac{c}{d}\right) \Leftrightarrow (ad > bc)$$

The following theorem provides a very important property of rationals.

theorem 2.1.4 *Between any two rational numbers there is another (and, hence, infinitely many others).*

proof. Let $b \in \mathbb{N}$, $d \in \mathbb{N}$, and $\frac{a}{b} > \frac{c}{d}$.

Notice that

$$(\forall m \in \mathbb{N}) \left[\frac{a}{b} > \frac{a+mc}{b+md} > \frac{c}{d} \right].$$

Indeed, since b , d and m are positive we have

$$[a(b+md) > b(a+mc)] \Leftrightarrow [mad > mbc] \Leftrightarrow (ad > bc),$$

and

$$[d(a+mc) > c(b+md)] \Leftrightarrow (ad > bc).$$

■

2.2 Irrational Numbers

Suppose that $a \in Q^+$ and consider the equation

$$x^2 = a. \tag{2}$$

In general (2) does not have rational solutions. For example, the following theorem holds.

theorem 2.2.1 *No rational number has square 2.*

proof. Suppose for a contradiction that the rational number $\frac{p}{q}$, ($p \in \mathbb{Z}$, $q \in \mathbb{N}$, in lowest terms) is such that $(\frac{p}{q})^2 = 2$. Then $p^2 = 2q^2$.

Hence, appealing to the Fundamental Theorem of Arithmetic, p^2 is even, and hence p is even. Thus $(\exists k \in \mathbb{Z}) [p = 2k]$. This implies that

$$2k^2 = q^2,$$

and therefore q is also even. The last statement contradicts our assumption that p and q have no common factor. ■

The last theorem provides an example of a number which is not rational. We call such numbers irrational.

We leave the following as an exercise.

Exercise 2.2.2 *No rational x satisfies the equation*

- $x^3 = x + 7$.
- $x^5 = x + 4$.

2.3 Real numbers

Real numbers can be defined as the union of both rational and irrational numbers. They can be both positive or negative and are denoted by the symbol “ \mathbb{R} ”. All the natural numbers, decimals and fractions come under this category. In this course we postulate the existence of the set of real numbers \mathbb{R} as well as basic properties summarized in a collection of axioms. Will find that axioms $A.1 - A.11$ characterize \mathbb{R} as an algebraic field.

2.3.1 Axiomatic definition

A.1 $\forall a, b \in \mathbb{R} : (a + b) \in \mathbb{R}$ (closed under addition).

A.2 $\forall a, b \in \mathbb{R} : [a + b = b + a]$ (commutativity of addition).

A.3 $\forall a, b, c \in \mathbb{R} : [(a + b) + c = a + (b + c)]$ (associativity of addition).

A.4 $\exists 0 \in \mathbb{R}, \forall a \in \mathbb{R} : [0 + a = a]$ (existence of additive identity).

A.5 $\forall a \in \mathbb{R}, \exists !x \in \mathbb{R} : [a + x = 0]$ (existence of additive inverse). We write $x = -a$.

Axioms $A.6 - A.10$ are analogues of $A.1 - A.5$ for the operation of multiplication.

A.6 $\forall a, b \in \mathbb{R} : [ab \in \mathbb{R}]$ (closed under multiplication).

A.7 $\forall a, b \in \mathbb{R} : [ab = ba]$ (commutativity of multiplication).

A.8 $\forall a, b, c \in \mathbb{R} : [(ab)c = a(bc)]$ (associativity of multiplication).

A.9 $\exists 1 \in \mathbb{R}, \forall a \in \mathbb{R} : [1 \cdot a = a]$ (existence of multiplicative identity).

A.10 $\forall a \in \mathbb{R} - \{0\}, \exists! y \in \mathbb{R} : [ay = 1]$ (existence of multiplicative inverse). We write $y = \frac{1}{a}$.

The last axiom links the operations of summation and multiplication.

A.11 $\forall a, b, c \in \mathbb{R} : [(a + b)c = ac + bc]$ (distributive law).

Example 2.3.1 $\forall a \in \mathbb{R} : 0a = 0$.

Indeed, we have

$$\begin{aligned} a + 0a &= 1a + 0a \text{ (by A.9)} \\ &= (1 + 0)a \text{ (by A.11)} \\ &= 1a \text{ (by A.2 and A.4)} \\ &= a \text{ (by A.9)} \end{aligned}$$

Now add $-a$ to both sides.

$$\begin{aligned} -a + (a + 0a) &= -a + a \\ \Rightarrow (-a + a) + 0a &= 0 \text{ (by A.3 and A.5)} \\ \Rightarrow 0 + 0a &= 0 \text{ (by A.5)} \\ \Rightarrow 0a &= 0 \text{ (by A.4).} \end{aligned}$$

Remark 2.3.2 The set of rationals \mathbb{Q} also forms an algebraic field (that is, the rational numbers satisfy axioms **A.1** - **A.11**).

Now we add axioms of order.

O.1 $\forall a, b \in \mathbb{R} : [(a = b) \vee (a < b) \vee (a > b)]$

$\equiv \forall a, b \in \mathbb{R} : [(a \geq b) \wedge (b \geq a) \Rightarrow (a = b)]$ (trichotomy law).

O.2 $\forall a, b, c \in \mathbb{R} : [(a > b) \wedge (b > c) \Rightarrow (a > c)]$ (transitive law).

O.3 $\forall a, b, c \in \mathbb{R} : [(a > b) \Rightarrow (a + c > b + c)]$ (compatibility with addition).

O.4 $\forall a, b, c \in \mathbb{R} : [(a > b) \wedge (c > 0) \Rightarrow (ac > bc)]$ (compatibility with multiplication).

Remark 2.3.3 Note that

$$\forall a, b \in \mathbb{R} : \{(a > b) \Leftrightarrow (a - b > 0)\}.$$

This follows from (O.3) by adding $-b$.

Axioms **A.1-A.11** and **O.1 - O.4** define \mathbb{R} to be an ordered field. Observe that the rational numbers also satisfy axioms **A.1 - A.11** and **O.1 - O.4**, so \mathbb{Q} is also an ordered field.

2.3.2 Absolute value

Definition 2.3.4 We define the maximum and the minimum of two real a and b by:

$$\max(a, b) = \begin{cases} a & \text{if } a \geq b \\ b & \text{if } b > a \end{cases}, \quad \min(a, b) = \begin{cases} a & \text{if } a \leq b \\ b & \text{if } b < a \end{cases}$$

Definition 2.3.5 The absolute value $|x|$ of x is defined by

$$|x| = \begin{cases} x & \text{if } x \geq 0, \\ -x & \text{if } x < 0. \end{cases}$$

theorem 2.3.6 We can prove a bunch of theorems about the absolute value function that we usually take for granted:

- 1) $|x| \geq 0$ and $(|x| = 0 \Leftrightarrow x = 0)$.
- 2) $\forall x \in \mathbb{R}, |-x| = |x|$.
- 3) $\forall x, y \in \mathbb{R}, |xy| = |x||y|$.
- 4) $|x^2| = x^2 = |x|^2$.
- 5) If $x, y \in \mathbb{R}$, then $|x| \leq y \Leftrightarrow -y \leq x \leq y$.
- 6) $\forall x \in \mathbb{R}, x \leq |x|$.

proof. :

- 1) If $x \geq 0$ then $|x| = x \geq 0$. If $x \leq 0$, then $-x \geq 0 \Rightarrow |x| = -x \geq 0$. Thus, $|x| \geq 0$. Now suppose $x = 0$. Then, $|x| = x = 0$. For the other direction, suppose $|x| = 0$. Then, if $x \geq 0 \Rightarrow x = |x| = 0$. If $x \leq 0$, then $-x = |x| = 0$. Therefore, $x = 0 \Leftrightarrow |x| = 0$.
- 2) If $x \geq 0$ then $-x \leq 0$. Thus, $|x| = x = -(-x) = |-x|$. If $x \leq 0$ then $-x \geq 0$ and thus $|-x| = | -(-x)| = |x|$.

3) a) If $x \geq 0$ and $y \geq 0$, then $xy \geq 0$ and $|xy| = xy = |x||y|$.
 b) If $x \leq 0$ and $y \leq 0$, then $xy \geq 0 \Rightarrow |xy| = xy = (-x)(-y) = |x||y|$.
 c) If $x \leq 0$ and $y \geq 0$, then $xy \leq 0 \Rightarrow |xy| = -xy = (-x)(y) = |x||y|$.
 d) If $x \geq 0$ and $y \leq 0$, then $xy \leq 0 \Rightarrow |xy| = -xy = (x)(-y) = |x||y|$.
 4) Take $x = y$ in 3). Then, $|x^2| = |x|^2$. Since $x^2 \geq 0$, it follows that $|x^2| = x^2$.
 5) Suppose $|x| \leq y$. If $x \geq 0$, then $-y \leq 0 \leq x = |x| \leq y$. Therefore, $-y \leq x \leq y$.
 If $x \leq 0$, then $-x \geq 0$ and $|x| = -x \leq y$. Hence, $-y \leq -x \leq y \Rightarrow -y \leq x \leq y$.
 6) If $x \geq 0$ then $x = |x|$. If $x \leq 0$ then $x \leq |x|$ and thus $x \leq |x|$. ■

theorem 2.3.7 (triangle inequality)

$$\forall a, b \in \mathbb{R} : |a + b| \leq |a| + |b|.$$

proof. We split the proof into two cases. We use the fact that $a \leq |a|$ for all $a \in \mathbb{R}$.

Case $a + b \geq 0$. Then

$$|a + b| = a + b \leq |a| + |b|.$$

Case $a + b < 0$. Then

$$|a + b| = -(a + b) = (-a) + (-b) \leq |a| + |b|.$$

■

Example 2.3.8 Prove that

- 1) $(\forall a \in \mathbb{R})(\forall b \in \mathbb{R})[a^2 + b^2 \geq 2ab]$.
- 2) $(\forall a \in \mathbb{R}^+)(\forall b \in \mathbb{R}^+)[\frac{a+b}{2} \geq \sqrt{ab}]$.
- 3) $(\forall a \in \mathbb{R}^+)(\forall b \in \mathbb{R}^+)(\forall c \in \mathbb{R}^+)(\forall d \in \mathbb{R}^+) \left[\frac{a+b+c+d}{4} \geq \sqrt[4]{abcd} \right]$.
- 4) Let $n \geq 2$ be a natural number. Prove that

$$\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n} > \frac{1}{2}.$$

Recall that $\mathbb{R}^+ = \{x \in \mathbb{R} \mid x \geq 0\}$.

proof. 1) The result is equivalent to $a^2 + b^2 - 2ab \geq 0$. But,

$$a^2 + b^2 - 2ab = (a - b)^2 \geq 0.$$

Note that the equality holds if and only if $a = b$.

2) As above, let us prove that the difference between the left-hand side (LHS)

and the right-hand side (RHS) is non-negative:

$$\frac{a+b}{2} - \sqrt{ab} = \frac{(\sqrt{a} - \sqrt{b})^2}{2} \geq 0.$$

The equality holds if and only if $a = b$.

3) By (2) and by (O.2) we have

$$\frac{a+b+c+d}{4} \geq \frac{\sqrt{ab} + \sqrt{cd}}{2} \geq \sqrt{\sqrt{ab}\sqrt{cd}} = \sqrt[4]{abcd}.$$

The equality holds if and only if $a = b = c = d$.

$$4) \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \underbrace{\frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n}}_n = \frac{n}{2} = \frac{1}{2}. \blacksquare$$

theorem 2.3.9 (Bernoulli's inequality) $\forall n \in \mathbb{N}, \forall x > -1 : [(1+x)^n \geq 1 + xn]$.

proof. Base case. The inequality holds for $n = 0, 1$.

Induction step. Suppose that the inequality is true for $n = k$ with $k \geq 1$; that is,

$$(1+x)^k \geq 1 + kx.$$

We have to prove that it is true for $n = k + 1$; in other words,

$$(1+x)^{k+1} \geq 1 + (k+1)x.$$

Now,

$$\begin{aligned} (1+x)^{k+1} &= (1+x)^k(1+x) \\ &\geq (1+kx)(1+x) \\ &= 1 + (k+1)x + kx^2 \\ &\geq 1 + (k+1)x. \end{aligned}$$

This concludes the induction step. By the principle of mathematical induction, the result is true for all $n \in \mathbb{N}$. \blacksquare

2.3.3 Bounded Sets of \mathbb{R}

Definition 2.3.10 Let A be a subset of \mathbb{R} and non-empty .

We say that A is bounded from above if and only if :

$$\exists M \in \mathbb{R}; \forall x \in A : x \leq M$$

We say that A is bounded from below if and only if

$$\exists m \in \mathbb{R}; \forall x \in A : x \geq m$$

A is bounded if and only if it is bounded from above and below.

Proposition 2.3.11 The three following conditions are equivalent

- 1) A is bounded set,
- 2) $\exists m \in \mathbb{R}, \exists M \in \mathbb{R}; \forall x \in A : m \leq x \leq M$.
- 3) $\exists M \in \mathbb{R}_+^*; \forall x \in A : |x| \leq M$.

Definition 2.3.12 Let $A \subseteq \mathbb{R}$. We say that $M \in \mathbb{R}$ is the supremum of A , written $\sup A$, if

- (i) $\forall x \in A : x \leq M$ for all $x \in A$; (M is an upper bound of A)
- (ii) if $x \leq \dot{M}$ for all $x \in A$ then $M \leq \dot{M}$ (M is the least upper bound of A).

Definition 2.3.13 Let $A \subseteq \mathbb{R}$. We say that $m \in \mathbb{R}$ is the infimum of A , written $\inf A$, if

- (i) $\forall x \in A : x \geq m$ for all $x \in A$; (m is a lower bound of A)
- (ii) if $x \geq \dot{m}$ for all $x \in A$ then $m \geq \dot{m}$ (m is the greatest lower bound of A).

Definition 2.3.14 If $\sup A \in A$, it is called $\max A$.

If $\inf A \in A$, it is called $\min A$.

Notation 3 If A is infinite from above (from below, respectively) in \mathbb{R} we write $\sup A = +\infty$ ($\inf A = -\infty$, respectively).

Remark 2.3.15 If A has a supremum (an infimum, respectively), then $\sup A$ ($\inf A$) is unique.

Example 2.3.16 • Let $A = [1, 2)$. Then 2 is an upper bound, and is the least upper bound: if $\dot{M} < 2$ then \dot{M} is not an upper bound because $\max(1, 1 + \frac{\dot{M}}{2}) \in A$ and $\max(1, 1 + \frac{\dot{M}}{2}) > \dot{M}$. Note that in this case $\sup A \notin A$, so $\#\max A$.

• Let $A = (1, 2]$. Then we again have $\sup A = 2$, and this time $\sup A \in A$. The supremum is the least upper bound of a set. There's an analogous definition for lower bounds.

Axiom 2.3.17 (supermum and infimum) Let A be a non-empty subset of \mathbb{R} that is bounded above (below, respectively). Then A has a supremum (an infimum, respectively).

Let's explore some useful properties of sup and inf.

Proposition 2.3.18 (i) Let A, B be non-empty subsets of \mathbb{R} , with $A \subseteq B$ and with B bounded above. Then A is bounded above, and $\sup A \leq \sup B$.

(ii) Let $B \subseteq \mathbb{R}$ be non-empty and bounded below. Let $A = \{-x : x \in B\}$. Then A is non-empty and bounded above. Furthermore, $\inf B$ exists, and $\inf B = -\sup A$.

proof. (i) Since B is bounded above, it has an upper bound, say M . Then $x \leq M$ for all $x \in B$, so certainly $x \leq M$ for all $x \in A$, so M is an upper bound for A . Now A, B are non-empty and bounded above, so by Axiom of supremum.

Note that $\sup B$ is an upper bound for B and hence also for A , so $\sup B \geq \sup A$ (since $\sup A$ is the least upper bound for A).

(ii) Since B is non-empty, so is A .

Let m be a lower bound for B , so $x \geq m$ for all $x \in B$. Then $-x \leq -m$ for all $x \in B$, so $y \leq -m$ for all $y \in A$, so $-m$ is an upper bound for A .

Now A is non-empty and bounded above, so by Axiom of supremum. Then $y \leq \sup A$ for all $y \in A$, so $x \geq -\sup A$ for all $x \in B$, so $-\sup A$ is a lower bound for B . Also, we saw before that if m is a lower bound for B then $-m$ is an upper bound for A . Then $-m \geq \sup A$ (since $\sup A$ is the least upper bound), so $m \leq -\sup A$.

So $-\sup A$ is the greatest lower bound.

So $\inf B$ exists and $\inf B = -\sup A$. ■

Proposition 2.3.19 (Approximation property) 1) Let $A \subseteq \mathbb{R}$ be non-empty and bounded above, then

$$M = \sup A \Leftrightarrow \begin{cases} \forall x \in A : x \leq M \\ \text{and} \\ \forall \epsilon; \exists a_\epsilon \in A : M - \epsilon < a_\epsilon \end{cases}$$

2) Let A be bounded from below, then

$$m = \inf A \Leftrightarrow \begin{cases} \forall x \in A : x \geq m \\ \text{and} \\ \forall \epsilon; \exists b_\epsilon \in A : b_\epsilon < m + \epsilon \end{cases}$$

proof. 1) Take $\epsilon > 0$. Note that by definition of the supremum we have $x \leq \sup A$ for all $x \in A$. Suppose, for a contradiction, that $\sup A - \epsilon \geq x$ for all $x \in A$. Then $\sup A - \epsilon$ is an upper bound for A , but $\sup A - \epsilon < \sup A$. Contradiction.

So there is $a_\epsilon \in A$ with $\sup A - \epsilon < a_\epsilon$.

2) In the same way we prove the second case. ■

Axiom 2.3.20 (of Archimedes) $\forall x > 0; \forall y \in \mathbb{R}; \exists n \in \mathbb{N}^* : y < nx.$

proof. We suppose that: $\exists x > 0; \exists y \in \mathbb{R}; \forall n \in \mathbb{N}^* : y \geq nx$ or $\exists x > 0; \exists y \in \mathbb{R}; \forall n \in \mathbb{N}^* : n \leq \frac{y}{x}$, that's mean the set \mathbb{N}^* is limited from above it accepts an upper limit in \mathbb{R} called M . so

$$\forall \epsilon; \exists n_\epsilon \in \mathbb{N}^* : M - \epsilon < n_\epsilon.$$

Putting $\epsilon = 1$, we get :

$$\exists n_\epsilon \in \mathbb{N}^* : M - 1 < n_\epsilon \text{ or } \exists n_\epsilon \in \mathbb{N}^* : M < n_\epsilon + 1$$

but $n_\epsilon + 1 \in \mathbb{N}^*$, this is a contradiction with $\sup \mathbb{N}^* = M$. ■

Example 2.3.21 $A = [1, 2[; \sup A = 2 \notin A$, then $\nexists \max A$; $\inf A = 1 = \min A$

$$A = \left\{ \frac{1}{n}; n \in \mathbb{N}^* \right\}; \forall n \in \mathbb{N}^* : n \geq 1 \Rightarrow 0 < \frac{1}{n} \leq 1, \text{ then } \sup A = \max A = 1 \in A.$$

Let we proof that $\inf A = 0$ i.e.

$$0 = \inf A \Leftrightarrow \begin{cases} \forall x \in A : x \geq 0 \\ \text{and} \\ \forall \epsilon, \exists a_\epsilon \in A : a_\epsilon < 0 + \epsilon \end{cases}$$

On the other side we have

$$\forall \epsilon, \exists a_\epsilon \in A : a_\epsilon < 0 + \epsilon \Leftrightarrow \forall \epsilon, \exists n \in \mathbb{N}^* : \frac{1}{n} < \epsilon.$$

and this proposition is true and its according to Archimedes' Axiom

$$\forall \epsilon, \exists n \in \mathbb{N}^* : n\epsilon > 1$$

$\min A = \text{unavailable}$, because $0 \notin A$.

Definition 2.3.22 Let $x \in \mathbb{R}$, there exists a unique relative integer, the integer part denoted $E(x)$, such that $E(x) \leq x < E(x) + 1$. We also note $E(x) = [x]$.

Example 2.3.23 1) $E(3,5) = 3$ since $3 \leq 3,5 < 3 + 1$.

2) $E(-3,5) = -4$ since $-4 \leq -3,5 < -4 + 1$.

3) $\forall n \in \mathbb{N}^* : E\left(\frac{1}{n+1}\right) = 0$ since $\forall n \in \mathbb{N}^* : 0 \leq \frac{1}{n+1} < 0 + 1$.

2.3.4 Dense groups in \mathbb{R}

theorem 2.3.24 *Between every two different real numbers there is at least one rational number.*

proof. Let y and x be two real numbers where $x < y$. According to Archimedean axiom

$$\exists n \in \mathbb{N}^* : 1 < n(y - x) \text{ or } nx + 1 < ny.$$

On the other hand we have

$$\begin{aligned} E(nx) &\leq nx < E(nx) + 1 \\ \text{or } nx &< E(nx) + 1 \leq nx + 1 < ny. \end{aligned}$$

So

$$x < \frac{E(nx) + 1}{n} < y$$

Well the rational number $\frac{E(nx) + 1}{n}$ is bounded between the two real numbers x, y . ■

theorem 2.3.25 *between every two different real numbers there is at least one irrational number.*

To prove this theory we need the following proposition.

Proposition 2.3.26 *if $x \in I$ (irrational number) and $r \in \mathbb{Q}^*$ then $rx \in I$.*

proof. We assume $x \in I$ and $r \in \mathbb{Q}^*$ and that $rx \in \mathbb{Q}$, then

$$\begin{aligned} \left(\frac{1}{r} \in \mathbb{Q}^* \text{ or } rx \in \mathbb{Q} \right) &\Rightarrow \frac{1}{r} \cdot rx \in \mathbb{Q} \\ &\Rightarrow x \in \mathbb{Q}. \end{aligned}$$

This is a contradiction because $x \in I$. ■

theorem. Let x, y be two real numbers, where $x < y$, according to the theorem , there exist a rational number r ($r \neq 0$) such that:

$$\frac{x}{\sqrt{2}} < r < \frac{y}{\sqrt{2}} \text{ or } x < r\sqrt{2} < y$$

and according to proposition we conclude that $r\sqrt{2}$ is a irrational number. ■

Corollary 2.3.27 *The two sets \mathbb{Q} and I is dense in \mathbb{R} .*

2.3.5 Intervals in \mathbb{R}

Definition 2.3.28 An interval is a subset of the real numbers that contains all real numbers lying between any two numbers of the subset.

Let a, b be two real numbers, where $a < b$, we define

- $[a, b] = \{x \in \mathbb{R} : a \leq x \leq b\}$ is called closed interval.
- $]a, b[= \{x \in \mathbb{R} : a < x < b\}$ is called open interval.
- $[a, b[= \{x \in \mathbb{R} : a \leq x < b\}$ is called half open interval.
- $]a, b] = \{x \in \mathbb{R} : a < x \leq b\}$.
- $[a, +\infty[= \{x \in \mathbb{R} : x \geq a\}$ is unbounded closed interval.
- $]-\infty, b[= \{x \in \mathbb{R} : x \leq b\}$.
- $]a, +\infty[= \{x \in \mathbb{R} : x > a\}$ is unbounded open interval.
- $]-\infty, b[= \{x \in \mathbb{R} : x < b\}$.
- $]-\infty, +\infty[$.

Exercise 2.3.29 Let

$$S = \left\{ 1 - \frac{(-1)^n}{n} : n \in \mathbb{N}^* \right\}.$$

Find $\inf S$ and $\sup S$ and prove your answers.

Solution 2.3.30 We claim that $\inf S = \frac{1}{2}$ and $\sup S = 2$. Note that, if n is odd, $1 - \frac{(-1)^n}{n} = 1 + \frac{1}{n}$, while if n is even, $1 - \frac{(-1)^n}{n} = 1 - \frac{1}{n}$. It follows, if n is odd, that

$$1 - \frac{(-1)^n}{n} > 1 > \frac{1}{2}.$$

If $n \geq 2$ is even,

$$1 - \frac{(-1)^n}{n} = 1 - \frac{1}{n} \geq 1 - \frac{1}{2} = \frac{1}{2}.$$

Arguing similarly, $1 - \frac{(-1)^n}{n} \leq 2$ and so $\frac{1}{2}$ and 2 are, respectively, lower and upper bounds for S . Since $\frac{1}{2} \in S$, there cannot be a lower bound $m > \frac{1}{2}$ and so $\frac{1}{2}$ is the greatest lower bound for S , i.e. $\inf S = \frac{1}{2}$. Since $2 \in S$, there cannot be a upper bound $M < 2$ and so 2 is the least upper bound for S , i.e. $\sup S = 2$.

Exercise 2.3.31 Let $A = \left\{ \frac{1}{n} : n = 1, 2, 3, \dots \right\} = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \right\}$

Example 2.3.32 1) Show that A is a non-empty set, both bounded above and below.

2) Show that $\sup(A) = \max(A) = 1$.

3) Show that $\inf(A) = 0$.

4) Show that $\min(A)$ does not exist..

Solution 2.3.33 Let $A = \left\{ \frac{1}{n} : n = 1, 2, 3, \dots \right\} = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \right\}$

1) $1 \in A \Rightarrow A \neq \emptyset$, $\forall n : n \geq 1$ we have $0 < \frac{1}{n} \leq 1 \Rightarrow 1$ is an upper bound of A and 0 is a lower bound of A .

2) $\sup A$ and $\inf A$ exist, according to the axiom of the upper bound : Let's show that $\sup A = 1$. Let $\varepsilon > 0$, we show that $\exists x_0 \in A / x_0 > 1 - \varepsilon$. In fact, let's take $x_0 = 1$. First of all $x_0 = 1$ verifies the precedent relation, since : $\forall \varepsilon > 0$, $1 > 1 - \varepsilon$, moreover $1 \in A$ then : $\sup A = \max A = 1$.

3) $\inf A = 0$? Let $\varepsilon > 0$, we show that $\exists x_0 \in A / 0 + \varepsilon > x_0$, the elements of A are of the form $\frac{1}{n}$ we must find $n \in \mathbb{N}^*/ \frac{1}{n} < \varepsilon$ or $n > \frac{1}{\varepsilon}$. For $\varepsilon > 0$ if we take $x_0 = \frac{1}{n}$ with $n > \frac{1}{\varepsilon}$ we obtain $x_0 \in A$ and $0 + \varepsilon > x_0$ then $\inf A = 0$.

4) We have $\forall n \geq 1, \frac{1}{n} > 0 \Rightarrow 0 \notin A \Rightarrow \nexists \min A$.