Chapter 2

Structure of real numbers field R
Dr L.Derbal

The aim of this chapter is to introduce axiomatically the set of Real numbers

2.1 Set of rational numbers Q.

2.1.1 Integers numbers

We take for granted the system N of natural numbers N = {1,2,3,4...}. In general the
equation z +a = 0 is not solvable in N whose case or a is positive. In order to make this
equation solvable, we must enlarge the set N = Z, by introducing negative integers as
unique solutions of the equations a + z = 0 (existence of the additive inverse) for each
a € N. Our extended system, which is denoted by Z, now contains all integers and can

be arranged in order
zZ=A.,-3,-2,-1,0,1,2,3,..} =NU{0} U{—a :a € N}

theorem 2.1.1 (Fundamental theorem of arithmetic) Every positive integer ex-

cept 1 can be expressed uniquely as a product of primes.

2.1.2 Rational Numbers

Let a € Z, b € Z. The equation

ar =b (1)

22
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need not have a solution x € Z. In order to solve (1) (for a # 0) we have to enlarge

our system of numbers again so that it includes fractions — (existence of multiplicative

a
inverse in Z — {0}.This motivates the following definition.

Definition 2.1.2 The set of rational numbers (or rationals) Q is the set

Qz{rzs:peZ,qu,th(p,q)zl}-

Here hef(p, q) stands for the highest common factor of p and g, so when writing b
q

for a rational we often assume that the numbers p and ¢ have no common factor greater
than 1.

Definition 2.1.3 Let b€ N, d € N. Then
a ¢
(g > a) <~ (ad > bC)

The following theorem provides a very important property of rationals.

theorem 2.1.4 Between any two rational numbers there is another (and, hence, infin-

itely many others).

proof. Let b € N, d € N, and %> 2
Notice that
a a+ mc c
Y N) |- —1.
(Vm €N\ 3 > 3 ma ~

Indeed, since b, d and m are positive we have
[a (b+ md) > b(a+ mc)] < [mad > mbc] < (ad > be) ,

and
[d(a+ mc) > c(b+md)] < (ad > be) .

2.2 Irrational Numbers
Suppose that a € QT and consider the equation
22 = a. (2)

In general (2) does not have rational solutions. For example, the following theorem
holds.



2. Structure of real numbers field R Dr L.Derbal 24

theorem 2.2.1 No rational number has square 2.

proof. Suppose for a contradiction that the rational number B, (p €Z,qeN,in
q

lowest terms) is such that (8)2 = 2. Then p? = 2¢°.
q

Hence, appealing to the Fundamental Theorem of Arithmetic, p? is even, and hence
p is even. Thus (3k € Z) [p = 2k|. This implies that

2k? = q2,

and therefore ¢ is also even. The last statement contradicts our assumption that p and

q have no common factor. m

The last theorem provides an example of a number which is not rational. We call
such numbers irrational.

We leave the following as an exercise.

Exercise 2.2.2 No rational x satisfies the equation
o3 =g +7.
o’ =z +4.

2.3 Real numbers

Real numbers can be defined as the union of both rational and irrational numbers. They
can be both positive or negative and are denoted by the symbol “R”. All the natural
numbers, decimals and fractions come under this category.In this course we postulate
the existence of the set of real numbers R as well as basic properties summarized in a

collection of axioms.Will find that axioms A.1— A.11 characterize R as an algebraic field.

2.3.1 Axiomatic definition

Al Va,beR: (a+0b) € R (closed under addition).

A2 Va,beR:[a+b=0b+a] (commutativity of addition).

A3 Va,b,ce R:[(a+b)+c=a+ (b+ c)] (associativity of addition).
A4 30 € R,Va € R: [0+ a = a] (existence of additive identitie).

A5 VYa e R, 3z € R: [a+ x = 0] (existence of additive inverse). We write z = —a.

Axioms A.6 — A.10 are analogues of A.1 — A.5 for the operation of multiplication.
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A.6 Va,beR: [ab € R] (closed under multiplication).

A.7T Ya,b € R: [ab = ba] (commutativity of multiplication).

A8 Va,b,c € R: [(ab)c = a(bc)] (associativity of multiplication).
A9 31 e R,Va € R: [1-a = a] (existence of multiplicative identitie).

A.10 VYa € R —{0},3'y € R : [ay = 1] (existence of multiplicative inverse). We write
1

y=-.
a

The last axiom links the operations of summation and multiplication.
A.11 Va,b,c € R: [(a+ b)c = ac+ bc] (distributive law).

Example 2.3.1 Va € R: 0a = 0].

Indeed, we have

a+0a = la+0a (by A.9)
= (1+0)a(by A.11)
= la (by A.2 and A.4)
= a (by A.9)
Now add —a to both sides.
—a+(a+0a) = —a+a
(—a+a)+0a=0 (by A.8 and A.5)

0+4+0a=0 (by A.5)
0a=0 (by A.4).

L

Remark 2.3.2 The set of rationals Q also forms an algebraic field (that is, the rational
numbers satisfy axioms A.1 - A.11).

Now we add axioms of order.
0.1 Va,beR:[(a=b)V(a<b)V(a>D)]
=Va,beR:[(a>Db)A(b>a)= (a=0) (trichotomy law).
0.2 Va,b,c e R:[(a>b) A (b>c)= (a>c)] (transitive law).

0.3 Va,b,c e R: [(a > b) = (a+ ¢ > b+ ¢)] (compatibility with addition).
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0.4 Va,b,c e R: [(a > b) A (¢ > 0) = (ac > bc)] (compatibility with multiplication).
Remark 2.3.3 Note that
Va,beR: {(a>b) < (a—b>0)}.
This follows from (0.3) by adding —b.

Axioms A.1-A.11 and O.1 - O.4 define R to be an ordered field. Observe that the
rational numbers also satisfy axioms A.1 - A.11 and O.1 - 0.4, so Q is also an ordered
field.

2.3.2 Absolute value

Definition 2.3.4 We define the mazximum and the minimum of two real a and b by:

a ifa>b
b ifb>a

a ifa<b

’ min(a’b){ b ifb<a

max(a,b) = {

Definition 2.3.5 The absolute value |x| of = is defined by

theorem 2.3.6 We can prove a bunch of theorems about the absolute value function
that we usually take for granted:

1) |x| >0 and (|x| =0 <z =0).

2)Vr e R, | — x| = |z|.

3)Va,y € R, |zy| = ||yl

4) 2% = 2% = |z,

5)If v,y € R, then |z| <y —y <z <y.

6)Vr e R, z < |x|.

proof. :

1) If x > 0 then |z| =2 > 0. If z <0, then —x > 0 = |z| = —z > 0. Thus, |z| > 0.
Now suppose x = 0.Then, |z| = 2 = 0. For the other direction, suppose |z| = 0.
Then, if £ > 0= o = |z| =0. If x <0, then —x = |z| = 0. Therefore,

x=0<|z| =0.

2) If z > 0 then —z < 0. Thus, [z|=2 = —(—2) =| —z|. If 2 <0 then —x > 0 and

thus | -z = [ — (=) = [z,
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3)a)If >0 and y > 0, then xy > 0 and |zy| = zy = |z||y|.
b) If x <0and y <0, then zy > 0 = |zy| = zy = (—x) (—y) = |z||y|.
c)If x <0andy >0, then zy < 0= |zy| = —zy = (—x) (y) = |z||y|.
d) If 2 > 0and y <0, then 2y <0 = |zy| = —zy = (z) (—y) = |z||ly|.
4) Take z = y in 3). Then, |2?| = |z|?. Since 2% > 0, it follows that |z?| = 2.
5) Suppose |z| <y. If x >0, then —y <0 <z = |z| <y. Therefore, —y < z < y.
If x <0, then —z >0 and |z| = —2 <y. Hence, —y < —z <y= —y <z <y.
6) If © > 0 then x = |z|. If x <0 then z < |z| and thus z < |z|. m

theorem 2.3.7 (triangle inequality)
Va,b e R: |a+b| < |a|+ |b].

proof. We split the proof into two cases. We use the fact that a < |a| for all a € R.
Case a +b > 0. Then
la +bl =a+b<|al + |b].

Case a +b < 0. Then
la+b] = —(a+0b) = (—a) + (=) <la| + [b].
||

Example 2.3.8 Prove that
1) (Va € R)(Vb € R)[a? + b > 2ab].

2) (Va € R*)(¥b € R*)[a;b > Vabl.

a+b1—c+d -

3) (Va € RT)(Vb € RT)(Vc € RT)(Vd € RT) abed |

4) Let n > 2 be a natural number. Prove that

1 + 1 4ot 1 >1
n+1l n+2 on = 2"

Recall that RT = {z € R | z > 0}.
proof. 1) The result is equivalent to a® + b* — 2ab > 0. But,
a® 4 b* — 2ab = (a — b)* > 0.

Note that the equality holds if and only if a = b.
2) As above, let us prove that the difference between the left-hand side (LHS)
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and the right-hand side (RHS) is non-negative:

2
‘L;b—mzw;@zu

The equality holds if and only if a = b.
3)By (2) and by (0O.2) we have

a+b+c+d2\/%+\/a2 \/@M:m'

4 2
The equality holds if and only if a = b = ¢ =d.
PRI I N IR S
n+l n+2 2n " 2n  2n on 2 2

~~
n

theorem 2.3.9 ( Bernoulli’s inequality) Vn € N,Vo > —1:[(1+2)" > 1+ zn].

proof. Base case. The inequality holds for n = 0, 1.
Induction step. Suppose that the inequality is true for n = k with k > 1; that is,

(1+x)k > 1+ kax.
We have to prove that it is true for n = k + 1; in other words,
A+ ) > 1+ (k+ 1)z
Now,

L+ = (1+2)"(1+2)
(1+kz)(1+x)
1+ (k+ 1)z + ka?
1+ (k+1)z.

Vv

v

This concludes the induction step. By the principle of mathematical induction, the result

istrueforalln € N. m

2.3.3 Bounded Sets of R

Definition 2.3.10 Let A be a subset of R and non-empty .
We say that A is bounded from above if and only if :

dIMeRVee A:x < M
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We say that A is bounded from below if and only if
dIneR,VeeA:x>m
A is bounded if and only if it is bounded from above and below.

Proposition 2.3.11 The three following conditions are equivalent
1) A is bounded set,
2)ImeR,IM eR;Vee A:m <z <M.
3)3IM e R*;Vx € A: |z| < M.

Definition 2.3.12 Let A C R. We say that M € R is the supremum of A, written
sup A, if

(i)Vr € A:x <M for allx € A; (M is an upper bound of A)

(ii) if z < M for all z € A then M < M (M is the least upper bound of A).

Definition 2.3.13 Let A CR. We say that m € R is the infimum of A, written inf A,
if

(i)Vr € A:x>m for allz € A; (m is a lower bound of A)

(ii) if © > m for all x € A then m > m (m is the greatest lower bound of A).

Definition 2.3.14 Ifsup A € A, it is called max A.
Ifinf A € A, it is called min A.

Notation 3 If A is infinite from above (from below, respectively) in R we write sup A =

+oo (inf A = —o0o,respectively).

Remark 2.3.15 If A has a supremum (an infimum, respectively), then sup A (inf A) is

Unique.

Example 2.3.16 o Let A = [1,2). Then 2 is an upper bound, and is the least upper

. . M
bound: if M < 2 then M is not an upper bound because max(1,1 + 7) € A and

M .
max(1,1+ ?) > M. Note that in this case sup A ¢ A, so Amax A.
o Let A = (1,2]. Then we again have sup A = 2, and this time sup A € A. The
supremum is the least upper bound of a set. There’s an analogous definition for lower

bounds.

Axiom 2.3.17 ( supermum and infimum) Let A be a non-empty subset of R that

is bounded above ( below, respectively). Then A has a supremum ( an infimum, respect-

ively).
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Let’s explore some useful properties of sup and inf.

Proposition 2.3.18 (i) Let A, B be non-empty subsets of R, with A C B and with B
bounded above. Then A is bounded above, and sup A <sup B .
(ii) Let B C R be non-empty and bounded below. Let A = {—x:x € B}. Then A is

non-empty and bounded above. Furthermore, inf B exists, and inf B = —sup A.

proof. (i) Since B is bounded above, it has an upper bound, say M. Then z < M
for all x € B, so certainly x < M for all x € A, so M is an upper bound for A. Now A,
B are non-empty and bounded above, so by Axiom of supermum .

Note that sup B is an upper bound for B and hence also for A, so supB > sup A
(since sup A is the least upper bound for A).

(i) Since B is non-empty, so is A.

Let m be a lower bound for B, so z > m for all z € B. Then —x < —m for all z € B,
soy < —m for all y € A, so —m is an upper bound for A.

Now A is non-empty and bounded above, so by Axiom of supremum. Then y < sup A
forally € A, so x > —sup A for all x € B, so —sup A is a lower bound for B. Also, we
saw before that if m is a lower bound for B then —m is an upper bound for A. Then
—m > sup A (since sup A is the least upper bound), so m < —sup A.

So —sup A is the greatest lower bound.

So inf B exists and inf B= —sup A. =

Proposition 2.3.19 (Approximation property) 1) Let A C R be non-empty and

bounded above, then

Vee Ao < M
M =supA < <{ and
Ve;dac € A: M — e < ae

2)Let A be bounded from below, then

VeeA:x>m
m=inf A & and
Ve;dbe € A:be <m+e€

proof. 1) Take e > 0. Note that by definition of the supremum we have z < sup A
for all x € A. Suppose, for a contradiction, that sup A — e > x for all x € A. Then
sup A — € is an upper bound for A, but sup A — ¢ < sup A. Contradiction.

So there is a. € A with sup A — € < a..

2) In the same way we prove the second case. m
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Axiom 2.3.20 ( of Archimedes) Vx > 0; Vy € R; 3n € N* : y < nuz.

proof. We suppose that: 3z > 0; dJy € R; Vn € N* : y > nzx or 3z > 0; Jy € R;
VneN :n< Q’ that’s mean the set N* is limited from above it accepts an upper limit
in R called M .xso

Ve; Ine e N* : M — € < n..

Putting e = 1, we get :
dneeN*:M—-1<ncoran.e N : M <n.+1
but n. + 1 € N*, this is a contradiction with supN* = M. =
Example 2.3.21 A =[1,2[;supA =2¢ A, then imaxA;infA=1=min A

1 1
A=<—mneN,VneN*:n>1=0< - <1, thensupA=maxA=1¢€ A.
n n
Let we proof that inf A =0 i.e.

VreA:2z>0
0=infA & and
Ve,dac € A:ac <0+¢

On the other side we have
Ve, Jac € A:ae <0+ €< Ve, In € N* % < €.
and this proposition is true and its according to Archimedes’ Axiom
Ve, In € N* : ne > 1
min A = unavailable, because 0 ¢ A.

Definition 2.3.22 Let x € R, there exists a unique relative integer, the integer part
denoted E(x), such that E(x) < x < E(z) + 1. We also note E(x) = [z].

Example 2.3.23 1) E(3,5) =3 since 3 < 3,5 <3+ 1.
2) E(-3,5) = —4 since —4 < -3,5 < -4 + 1.

3)Vn6N*:E<n%r1):()smceVnEN*:OSn%rl<0+l.
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2.3.4 Dense groups in R

theorem 2.3.24 Between every two different real numbers there is at least one rational

number.

proof. Let y and x be two real numbers where x < y. According to Archimedean
axiom

IneN':1<n(y—=z)ornzr+1<ny.

On the other hand we have

E(nz) < nr<FE(nz)+1

ornr < FE(nz)+1<nzr+1<ny.

So
E(nz)+1
< <y
n

E(nx)+1
n

Well the rational number is bounded between the two real numbers x, y. m

theorem 2.3.25 between every two different real numbers there is at least one irrational

number.
To prove this theory we need the following proposition.
Proposition 2.3.26 if x € I ( irrational number)and r € Q* then rx € I.

proof. We assume z € I and r € Q*and that rx € QQ, then

1 1
< € Qor rx € Q) = —rxcQ
T r
= z€Q.
This is a contradiction because xt € I. m

theorem. Let x, y be two real numbers, where x < y, according to the theorem |,

there sexist a rational number r (r # 0) such that:

x
—<T<lorm<r\/§<y

V2 V2

and according to proposition we conclude that /2 is a irrational number. m

Corollary 2.3.27 The two sets Q and I is dense in R.
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2.3.5 Intervals in R

Definition 2.3.28 An interval is a subset of the real numbers that contains all real

numbers lying between any two numbers of the subset.

Let a, b be two real numbers, where a < b, we define
- [a,b] ={z € R:a < x < b} is called closed interval.
- Ja,bl ={z € R:a <z < b} is called open interval.
- [a,b] = {x € R:a < x < b} is called half open interval.
-Jab)={r eR:ia<z <P "M AT T
- [a,+o0[={z € R: x> a} is unbounded closed interval.
- |00, b ={x R <ppr MMM AT
- Ja,+oo] = {z € R: 2z > a} is unbounded open interval.

- }—OO,b[Z{xGRx<b}" LU L L L L L L L O L B | R 1} H_

LU L L L L O LR L R 1

S:{l(_i)n:neN*}.

Find inf S and sup S and prove your answers.

- |—00, 400

Exercise 2.3.29 Let

1
Solution 2.3.30 We claim that infS = 3 and sup S = 2. Note that, if n is odd,

-1)" 1 -1)" 1
1—Q:1+—,whz’leifniseven,1—( ) =1-—.
n n n n
It follows, if n is odd, that
1" 1
1-— ( ) >1>—.
n 2
If n > 2 is even,
-1)" 1 1 1
1—( ) =1-—>1--==
n n 2 2
. o (-1)" 1 .
Arguing similarly, 1 — —— < 2 and so 3 and 2 are, respectively, lower and upper
n

1 1
bounds for S. Since 5 € S, there cannot be a lower bound m > 3 and so 51'5 the greatest

1
lower bound for S, i.e. infS = 3 Since 2 € S, there cannot be a upper bound M < 2

and so 2is the least upper bound for S, i.e. sup S = 2.
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Exercise 2.3.31 Let A = {1 Ton= 1,2,3,...} = {1,1,1, 1,...}
n 2°3°4
Example 2.3.32 1) Show that A is a non-empty set, both bounded above and below.
2) Show that sup(A) = max(A) = 1.
3) Show that inf(A) = 0.
4) Show that min(A) does not exist..

1
1)1€ A= A#0,Yn:n>1 we have 0 < — <1 =1 is an upper bound of A and
n

0 is a lower bound of A.

-

)

LW =

n

Solution 2.3.33 Let A = {1 :on= 1,2,3,...} = {1,;,

2) sup A and inf A ezist, according to the axiom of the upper bound : Let’s show that
sup A = 1. Let € > 0, we show that Ixg € A/ xog > 1 —e. In fact, let’s take xy = 1. First
of all xg = 1 wverifies the precedent relation, since : Ye > 0, 1 > 1 — ¢, morever 1 € A
then : sup A = max A = 1.

3) inf A = 0?7 Let € > 0, we show that 3zg € A/ 0+ ¢ >z, the elements of A are
of the form % we must find n € N*/ % <eorn> % For e > 0 if we take xg = % with

1
n > — we obtain xg € A and 0 + & > x¢g then inf A = 0.
€

1
4) WehcweVnZl,ﬁ>0:>O¢A$ﬁminA.



