
Chapter 2

Structure of real numbers field R
Dr L.Derbal

The aim of this chapter is to introduce axiomatically the set of Real numbers

2.1 Set of rational numbers Q.

2.1.1 Integers numbers

We take for granted the system N of natural numbers N = {1, 2, 3, 4...}. In general the
equation x+a = 0 is not solvable in N whose case or a is positive. In order to make this
equation solvable, we must enlarge the set N = Z+ by introducing negative integers as
unique solutions of the equations a + x = 0 (existence of the additive inverse) for each

a ∈ N. Our extended system, which is denoted by Z, now contains all integers and can
be arranged in order

Z = {...,−3,−2,−1, 0, 1, 2, 3, ...} = N ∪ {0} ∪ {−a : a ∈ N}.

theorem 2.1.1 (Fundamental theorem of arithmetic) Every positive integer ex-
cept 1 can be expressed uniquely as a product of primes.

2.1.2 Rational Numbers

Let a ∈ Z, b ∈ Z. The equation

ax = b (1)
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need not have a solution x ∈ Z. In order to solve (1) (for a 6= 0) we have to enlarge

our system of numbers again so that it includes fractions
b

a
(existence of multiplicative

inverse in Z− {0}.This motivates the following definition.

Definition 2.1.2 The set of rational numbers (or rationals) Q is the set

Q = {r =
p

q
: p ∈ Z, q ∈ N,hcf(p, q) = 1}.

Here hcf(p, q) stands for the highest common factor of p and q, so when writing
p

q
for a rational we often assume that the numbers p and q have no common factor greater

than 1.

Definition 2.1.3 Let b ∈ N, d ∈ N. Then(a
b
>
c

d

)
⇔ (ad > bc)

The following theorem provides a very important property of rationals.

theorem 2.1.4 Between any two rational numbers there is another (and, hence, infin-
itely many others).

proof. Let b ∈ N, d ∈ N, and a

b
>
c

d
.

Notice that

(∀m ∈ N)

[
a

b
>
a+mc

b+md
>
c

d

]
.

Indeed, since b, d and m are positive we have

[a (b+md) > b (a+mc)]⇔ [mad > mbc]⇔ (ad > bc) ,

and

[d (a+mc) > c (b+md)]⇔ (ad > bc) .

2.2 Irrational Numbers

Suppose that a ∈ Q+ and consider the equation

x2 = a. (2)

In general (2) does not have rational solutions. For example, the following theorem

holds.
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theorem 2.2.1 No rational number has square 2.

proof. Suppose for a contradiction that the rational number
p

q
, (p ∈ Z, q ∈ N, in

lowest terms) is such that (
p

q
)2 = 2. Then p2 = 2q2.

Hence, appealing to the Fundamental Theorem of Arithmetic, p2 is even, and hence

p is even. Thus (∃k ∈ Z) [p = 2k]. This implies that

2k2 = q2,

and therefore q is also even. The last statement contradicts our assumption that p and

q have no common factor.

The last theorem provides an example of a number which is not rational. We call

such numbers irrational.

We leave the following as an exercise.

Exercise 2.2.2 No rational x satisfies the equation
• x3 = x+ 7.

• x5 = x+ 4.

2.3 Real numbers

Real numbers can be defined as the union of both rational and irrational numbers. They

can be both positive or negative and are denoted by the symbol “R”. All the natural
numbers, decimals and fractions come under this category.In this course we postulate

the existence of the set of real numbers R as well as basic properties summarized in a
collection of axioms.Will find that axioms A.1−A.11 characterize R as an algebraic field.

2.3.1 Axiomatic definition

A.1 ∀a, b ∈ R : (a+ b) ∈ R (closed under addition).

A.2 ∀a, b ∈ R : [a+ b = b+ a] (commutativity of addition).

A.3 ∀a, b, c ∈ R : [(a+ b) + c = a+ (b+ c)] (associativity of addition).

A.4 ∃0 ∈ R, ∀a ∈ R : [0 + a = a] (existence of additive identitie).

A.5 ∀a ∈ R, ∃!x ∈ R : [a+ x = 0] (existence of additive inverse). We write x = −a.

Axioms A.6−A.10 are analogues of A.1−A.5 for the operation of multiplication.
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A.6 ∀a, b ∈ R : [ab ∈ R] (closed under multiplication).

A.7 ∀a, b ∈ R : [ab = ba] (commutativity of multiplication).

A.8 ∀a, b, c ∈ R : [(ab)c = a(bc)] (associativity of multiplication).

A.9 ∃1 ∈ R, ∀a ∈ R : [1·a = a] (existence of multiplicative identitie).

A.10 ∀a ∈ R − {0}, ∃!y ∈ R : [ay = 1] (existence of multiplicative inverse). We write

y =
1

a
.

The last axiom links the operations of summation and multiplication.

A.11 ∀a, b, c ∈ R : [(a+ b)c = ac+ bc] (distributive law).

Example 2.3.1 ∀a ∈ R : 0a = 0].

Indeed, we have

a+ 0a = 1a+ 0a (by A.9)

= (1 + 0)a(by A.11)

= 1a (by A.2 and A.4)

= a (by A.9)

Now add −a to both sides.

−a+ (a+ 0a) = −a+ a

⇒ (−a+ a) + 0a = 0 (by A.3 and A.5)

⇒ 0 + 0a = 0 (by A.5)

⇒ 0a = 0 (by A.4).

Remark 2.3.2 The set of rationals Q also forms an algebraic field (that is, the rational
numbers satisfy axioms A.1 - A.11).

Now we add axioms of order.

O.1 ∀a, b ∈ R : [(a = b) ∨ (a < b) ∨ (a > b)]

≡ ∀a, b ∈ R : [(a ≥ b) ∧ (b ≥ a)⇒ (a = b)] (trichotomy law).

O.2 ∀a, b, c ∈ R : [(a > b) ∧ (b > c)⇒ (a > c)] (transitive law).

O.3 ∀a, b, c ∈ R : [(a > b)⇒ (a+ c > b+ c)] (compatibility with addition).
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O.4 ∀a, b, c ∈ R : [(a > b) ∧ (c > 0)⇒ (ac > bc)] (compatibility with multiplication).

Remark 2.3.3 Note that

∀a, b ∈ R : {(a > b)⇔ (a− b > 0)}.

This follows from (O.3) by adding −b.

Axioms A.1-A.11 and O.1 - O.4 define R to be an ordered field. Observe that the
rational numbers also satisfy axioms A.1 - A.11 and O.1 - O.4, so Q is also an ordered
field.

2.3.2 Absolute value

Definition 2.3.4 We define the maximum and the minimum of two real a and b by:

max(a, b) =

{
a if a ≥ b
b if b > a

, min(a, b)

{
a if a ≤ b
b if b < a

Definition 2.3.5 The absolute value |x| of x is defined by

|x| =
{
x if x ≥ 0,

−x if x < 0.

theorem 2.3.6 We can prove a bunch of theorems about the absolute value function
that we usually take for granted:

1) |x| ≥ 0 and (|x| = 0⇔ x = 0).

2) ∀x ∈ R, | − x| = |x|.
3) ∀x, y ∈ R, |xy| = |x||y|.
4) |x2| = x2 = |x|2.
5) If x, y ∈ R, then |x| ≤ y ⇔ −y ≤ x ≤ y.
6) ∀x ∈ R, x ≤ |x|.

proof. :
1) If x ≥ 0 then |x| = x ≥ 0. If x ≤ 0, then −x ≥ 0 ⇒ |x| = −x ≥ 0. Thus, |x| ≥ 0.

Now suppose x = 0.Then, |x| = x = 0. For the other direction, suppose |x| = 0.

Then, if x ≥ 0⇒ x = |x| = 0. If x ≤ 0, then −x = |x| = 0. Therefore,

x = 0⇔ |x| = 0.

2) If x ≥ 0 then −x ≤ 0. Thus, |x| = x = −(−x) = | − x|. If x ≤ 0 then −x ≥ 0 and

thus | − x| = | − (−x)| = |x|.
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3) a) If x ≥ 0 and y ≥ 0, then xy ≥ 0 and |xy| = xy = |x||y|.
b) If x ≤ 0 and y ≤ 0, then xy ≥ 0⇒ |xy| = xy = (−x) (−y) = |x||y|.
c) If x ≤ 0 and y ≥ 0, then xy ≤ 0⇒ |xy| = −xy = (−x) (y) = |x||y|.
d) If x ≥ 0 and y ≤ 0, then xy ≤ 0⇒ |xy| = −xy = (x) (−y) = |x||y|.
4) Take x = y in 3). Then, |x2| = |x|2. Since x2 ≥ 0, it follows that |x2| = x2.

5) Suppose |x| ≤ y. If x ≥ 0, then −y ≤ 0 ≤ x = |x| ≤ y. Therefore, −y ≤ x ≤ y.
If x ≤ 0, then −x ≥ 0 and |x| = −x ≤ y. Hence, −y ≤ −x ≤ y ⇒ −y ≤ x ≤ y.
6) If x ≥ 0 then x = |x|. If x ≤ 0 then x ≤ |x| and thus x ≤ |x|.

theorem 2.3.7 (triangle inequality)

∀a, b ∈ R : |a+ b| ≤ |a|+ |b|.

proof. We split the proof into two cases. We use the fact that a ≤ |a| for all a ∈ R.
Case a+ b ≥ 0. Then

|a+ b| = a+ b ≤ |a|+ |b|.

Case a+ b < 0. Then

|a+ b| = −(a+ b) = (−a) + (−b) ≤ |a|+ |b|.

Example 2.3.8 Prove that
1) (∀a ∈ R)(∀b ∈ R)[a2 + b2 ≥ 2ab].

2) (∀a ∈ R+)(∀b ∈ R+)[
a+ b

2
≥
√
ab].

3) (∀a ∈ R+)(∀b ∈ R+)(∀c ∈ R+)(∀d ∈ R+)

[
a+ b+ c+ d

4
≥ 4
√
abcd

]
.

4) Let n ≥ 2 be a natural number. Prove that

1

n+ 1
+

1

n+ 2
+ ···+ 1

2n
>

1

2
.

Recall that R+ = {x ∈ R | x ≥ 0}.

proof. 1) The result is equivalent to a2 + b2 − 2ab ≥ 0. But,

a2 + b2 − 2ab = (a− b)2 ≥ 0.

Note that the equality holds if and only if a = b.

2) As above, let us prove that the difference between the left-hand side (LHS)
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and the right-hand side (RHS) is non-negative:

a+ b

2
−
√
ab =

(√
a−
√
b
)2

2
≥ 0.

The equality holds if and only if a = b.

3)By (2) and by (O.2) we have

a+ b+ c+ d

4
≥
√
ab+

√
cd

2
≥
√√

ab
√
cd =

4
√
abcd.

The equality holds if and only if a = b = c = d.

4)
1

n+ 1
+

1

n+ 2
+···+ 1

2n
>

1

2n
+

1

2n
+ ···+ 1

2n︸ ︷︷ ︸
n

=
n

2
=

1

2
.

theorem 2.3.9 ( Bernoulli’s inequality) ∀n ∈ N,∀x > −1 : [(1 + x)n ≥ 1 + xn].

proof. Base case. The inequality holds for n = 0, 1.

Induction step. Suppose that the inequality is true for n = k with k ≥ 1; that is,

(1 + x)k ≥ 1 + kx.

We have to prove that it is true for n = k + 1; in other words,

(1 + x)k+1 ≥ 1 + (k + 1)x.

Now,

(1 + x)k+1 = (1 + x)k(1 + x)

≥ (1 + kx)(1 + x)

= 1 + (k + 1)x+ kx2

≥ 1 + (k + 1)x.

This concludes the induction step. By the principle of mathematical induction, the result

is true for all n ∈ N.

2.3.3 Bounded Sets of R

Definition 2.3.10 Let A be a subset of R and non-empty .
We say that A is bounded from above if and only if :

∃M ∈ R; ∀x ∈ A : x ≤M
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We say that A is bounded from below if and only if

∃m ∈ R; ∀x ∈ A : x ≥ m

A is bounded if and only if it is bounded from above and below.

Proposition 2.3.11 The three following conditions are equivalent
1) A is bounded set,

2) ∃m ∈ R,∃M ∈ R;∀x ∈ A : m ≤ x ≤M.

3) ∃M ∈ R∗+;∀x ∈ A : |x| ≤M.

Definition 2.3.12 Let A ⊆ R. We say that M ∈ R is the supremum of A, written

supA, if

(i) ∀x ∈ A : x ≤M for all x ∈ A; (M is an upper bound of A)

(ii) if x ≤ M̀ for all x ∈ A then M ≤ M̀ (M is the least upper bound of A).

Definition 2.3.13 Let A ⊆ R. We say that m ∈ R is the infimum of A, written inf A,

if

(i) ∀x ∈ A : x ≥ m for all x ∈ A; (m is a lower bound of A)

(ii) if x ≥ m̀ for all x ∈ A then m ≥ m̀ (m is the greatest lower bound of A).

Definition 2.3.14 If supA ∈ A, it is called maxA.

If inf A ∈ A, it is called minA.

Notation 3 If A is infinite from above (from below, respectively) in R we write supA =

+∞ (inf A = −∞,respectively).

Remark 2.3.15 If A has a supremum (an infimum, respectively), then supA (inf A) is

unique.

Example 2.3.16 • Let A = [1, 2). Then 2 is an upper bound, and is the least upper

bound: if M̀ < 2 then M̀ is not an upper bound because max(1, 1 +
M̀

2
) ∈ A and

max(1, 1 +
M̀

2
) > M̀ . Note that in this case supA /∈ A, so @maxA.

• Let A = (1, 2]. Then we again have supA = 2, and this time supA ∈ A. The

supremum is the least upper bound of a set. There’s an analogous definition for lower

bounds.

Axiom 2.3.17 ( supermum and infimum) Let A be a non-empty subset of R that

is bounded above ( below, respectively). Then A has a supremum ( an infimum, respect-

ively).
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Let’s explore some useful properties of sup and inf.

Proposition 2.3.18 (i) Let A, B be non-empty subsets of R, with A ⊆ B and with B

bounded above. Then A is bounded above, and supA ≤ supB .

(ii) Let B ⊆ R be non-empty and bounded below. Let A = {−x : x ∈ B}. Then A is

non-empty and bounded above. Furthermore, inf B exists, and inf B = − supA.

proof. (i) Since B is bounded above, it has an upper bound, say M . Then x ≤ M

for all x ∈ B, so certainly x ≤M for all x ∈ A, so M is an upper bound for A. Now A,

B are non-empty and bounded above, so by Axiom of supermum .

Note that supB is an upper bound for B and hence also for A, so supB ≥ supA

(since supA is the least upper bound for A).

(ii) Since B is non-empty, so is A.

Let m be a lower bound for B, so x ≥ m for all x ∈ B. Then −x ≤ −m for all x ∈ B,
so y ≤ −m for all y ∈ A, so −m is an upper bound for A.

Now A is non-empty and bounded above, so by Axiom of supremum. Then y ≤ supA

for all y ∈ A, so x ≥ − supA for all x ∈ B, so − supA is a lower bound for B. Also, we

saw before that if m is a lower bound for B then −m is an upper bound for A. Then

−m ≥ supA (since supA is the least upper bound), so m ≤ − supA.

So − supA is the greatest lower bound.

So inf B exists and inf B = − supA.

Proposition 2.3.19 (Approximation property) 1) Let A ⊆ R be non-empty and

bounded above, then

M = supA⇔


∀x ∈ A : x ≤M
and

∀ε;∃aε ∈ A : M − ε < aε

2)Let A be bounded from below, then

m = inf A⇔


∀x ∈ A : x ≥ m
and

∀ε;∃bε ∈ A : bε < m+ ε

proof. 1) Take ε > 0. Note that by definition of the supremum we have x ≤ supA

for all x ∈ A. Suppose, for a contradiction, that supA − ε ≥ x for all x ∈ A. Then

supA− ε is an upper bound for A, but supA− ε < supA. Contradiction.

So there is aε ∈ A with supA− ε < aε.

2) In the same way we prove the second case.
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Axiom 2.3.20 ( of Archimedes) ∀x > 0; ∀y ∈ R; ∃n ∈ N∗ : y < nx.

proof. We suppose that: ∃x > 0; ∃y ∈ R; ∀n ∈ N∗ : y ≥ nx or ∃x > 0; ∃y ∈ R;
∀n ∈ N∗ : n ≤ y

x
, that’s mean the set N∗ is limited from above it accepts an upper limit

in R called M . so
∀ε;∃nε ∈ N∗ : M − ε < nε.

Putting ε = 1, we get :

∃nε ∈ N∗ : M − 1 < nε or ∃nε ∈ N∗ : M < nε + 1

but nε + 1 ∈ N∗, this is a contradiction with supN∗ = M.

Example 2.3.21 A = [1, 2[; supA = 2 /∈ A, then @maxA; inf A = 1 = minA

A =

{
1

n
;n ∈ N∗

}
; ∀n ∈ N∗ : n ≥ 1⇒ 0 <

1

n
≤ 1, then supA = maxA = 1 ∈ A.

Let we proof that inf A = 0 i.e.

0 = inf A⇔


∀x ∈ A : x ≥ 0

and

∀ε,∃aε ∈ A : aε < 0 + ε

On the other side we have

∀ε, ∃aε ∈ A : aε < 0 + ε⇔ ∀ε,∃n ∈ N∗ :
1

n
< ε.

and this proposition is true and its according to Archimedes’Axiom

∀ε,∃n ∈ N∗ : nε > 1

minA = unavailable, because 0 /∈ A.

Definition 2.3.22 Let x ∈ R, there exists a unique relative integer, the integer part
denoted E(x), such that E(x) ≤ x < E(x) + 1.We also note E(x) = [x].

Example 2.3.23 1) E (3, 5) = 3 since 3 ≤ 3, 5 < 3 + 1.

2) E (−3, 5) = −4 since −4 ≤ −3, 5 < −4 + 1.

3) ∀n ∈ N∗ : E
(

1
n+1

)
= 0 since ∀n ∈ N∗ : 0 ≤ 1

n+1 < 0 + 1.
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2.3.4 Dense groups in R

theorem 2.3.24 Between every two different real numbers there is at least one rational
number.

proof. Let y and x be two real numbers where x < y. According to Archimedean

axiom

∃n ∈ N∗ : 1 < n(y − x) or nx+ 1 < ny.

On the other hand we have

E (nx) ≤ nx < E (nx) + 1

or nx < E (nx) + 1 ≤ nx+ 1 < ny.

So

x <
E (nx) + 1

n
< y

Well the rational number
E (nx) + 1

n
is bounded between the two real numbers x, y.

theorem 2.3.25 between every two different real numbers there is at least one irrational
number.

To prove this theory we need the following proposition.

Proposition 2.3.26 if x ∈ I ( irrational number)and r ∈ Q∗ then rx ∈ I.

proof. We assume x ∈ I and r ∈ Q∗and that rx ∈ Q, then(
1

r
∈ Q∗or rx ∈ Q

)
⇒ 1

r
.rx ∈ Q

⇒ x ∈ Q.

This is a contradiction because x ∈ I.
theorem. Let x, y be two real numbers, where x < y, according to the theorem ,

there sexist a rational number r (r 6= 0) such that:

x√
2
< r <

y√
2
or x < r

√
2 < y

and according to proposition we conclude that r
√

2 is a irrational number.

Corollary 2.3.27 The two sets Q and I is dense in R.
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2.3.5 Intervals in R

Definition 2.3.28 An interval is a subset of the real numbers that contains all real
numbers lying between any two numbers of the subset.

Let a, b be two real numbers, where a < b, we define

- [a, b] = {x ∈ R : a ≤ x ≤ b} is called closed interval.

- ]a, b[ = {x ∈ R : a < x < b} is called open interval.

- [a, b[ = {x ∈ R : a ≤ x < b} is called half open interval.

- ]a, b] = {x ∈ R : a < x ≤ b}" " " " " " " " " " " " " " " " ".

- [a,+∞[ = {x ∈ R : x ≥ a} is unbounded closed interval.

- ]−∞, b] = {x ∈ R : x ≤ b}" " " " " " " " " " " " " " " " ".

- ]a,+∞[ = {x ∈ R : x > a} is unbounded open interval.

- ]−∞, b[ = {x ∈ R : x < b}" " " " " " " " " " " " " " " " ".

- ]−∞,+∞[" " " " " " " " " " " " " " ".

Exercise 2.3.29 Let
S =

{
1− (−1)n

n
: n ∈ N∗

}
.

Find inf S and supS and prove your answers.

Solution 2.3.30 We claim that inf S =
1

2
and supS = 2. Note that, if n is odd,

1− (−1)n

n
= 1 +

1

n
,while if n is even, 1− (−1)n

n
= 1− 1

n
.

It follows, if n is odd, that

1− (−1)n

n
> 1 >

1

2
.

If n ≥ 2 is even,

1− (−1)n

n
= 1− 1

n
≥ 1− 1

2
=

1

2
.

Arguing similarly, 1 − (−1)n

n
≤ 2 and so

1

2
and 2 are, respectively, lower and upper

bounds for S. Since
1

2
∈ S, there cannot be a lower bound m >

1

2
and so

1

2
is the greatest

lower bound for S, i.e. inf S =
1

2
. Since 2 ∈ S, there cannot be a upper bound M < 2

and so 2is the least upper bound for S, i.e. supS = 2.



2. Structure of real numbers field R Dr L.Derbal 34

Exercise 2.3.31 Let A =

{
1

n
: n = 1, 2, 3, ...

}
=

{
1,

1

2
,
1

3
,
1

4
, ...

}
Example 2.3.32 1) Show that A is a non-empty set, both bounded above and below.

2) Show that sup(A) = max(A) = 1.

3) Show that inf(A) = 0.

4) Show that min(A) does not exist..

Solution 2.3.33 Let A =

{
1

n
: n = 1, 2, 3, ...

}
=

{
1,

1

2
,
1

3
,
1

4
, ...

}
1) 1 ∈ A⇒ A 6= ∅, ∀n : n ≥ 1 we have 0 <

1

n
≤ 1⇒ 1 is an upper bound of A and

0 is a lower bound of A.

2) supA and inf A exist, according to the axiom of the upper bound : Let’s show that

supA = 1. Let ε > 0, we show that ∃x0 ∈ A/ x0 > 1− ε. In fact, let’s take x0 = 1. First

of all x0 = 1 verifies the precedent relation, since : ∀ε > 0, 1 > 1 − ε, morever 1 ∈ A
then : supA = maxA = 1.

3) inf A = 0? Let ε > 0, we show that ∃x0 ∈ A/ 0 + ε > x0, the elements of A are

of the form
1

n
we must find n ∈ N∗/ 1

n
< ε or n >

1

ε
. For ε > 0 if we take x0 =

1

n
with

n >
1

ε
we obtain x0 ∈ A and 0 + ε > x0 then inf A = 0.

4) We have ∀n ≥ 1,
1

n
> 0⇒ 0 /∈ A⇒ @minA.


