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1%t guided works

Instruction. The questions mentioned by (*) are left to the students.
Exercise 1.

1 Consider the following sets
A=1{1,3,7,9,12}, B={1,3,2}, C ={3,4,7,9}, D={3,1}.

Describe the following sets and their cardinals: AN B, A\ B, AAB, DxC,*BnNC,
CA(D), *DU A, P(C).

2 Describe the following sets:

F =[-2,1]N] — 00,0], *E = [-2,1[U] — 00, 0], *G = [~2, 1[A] — 00, 0], xH = Cx(F).

Exercise 2: Consider the following diagram, witch contains three subsets A, B, C of a set
E and the elements a, b, ¢, d, e, f, g, h of E

Determine whether the following statements are true or false
1)ge ANB 2)ge AnNB 3)ge AUB

4)feA 5 ecAnBnNC. 6){h,b} CANB

7){a,f} CAUC.

Exercise 3: If we have C' C AU B, is it because C C A or C C B?

Exercise 4: Let A, B, C' be three subsets of the set F, for X C F, denoted by X°¢ the
complement of X in F.

Prove the following Morgan’s laws :

1. ANB)UC=(AUuC)N(BUC) *2. (A°)° = A.

Exercise 5 : *Find the set of parts of the set F = {a,b,c,d}.



Exercise 6 : Let F and F be two sets, and let A and C' be subsets of £ and D, B be two
subsets of F.Prove it

(Ax B)N(C x D) =(ANC) x (BN D).

Exercise 7: Determine if the relations are reflexive, symmetric, transitive, or antisymmetric.
(1) E=7Z and 2Ry < = = —y

*(2) E =R and 2Ry < cos’>x +sin’y = 1

*(3) E=Nand 2Ry < Ip,q > 1, y = pr?. Where p and ¢ are natural numbers.

Exercise 8: Let R be the relation defined on R? by: (21, y1)R(z2,y2) < y1 = ya.

(1) Show that R is an equivalence relation.

(2) Determine the equivalence class of (1,0).

*(3) Same questions for the relation R defined on R? by: (x1, y1)R (e, y2) & 23+1y? = 22+13.

Exercise 9: Let R be the relation defined on N* by : n"Rm < dk € N* : n. = km..
(1) Show that R is a relation of order
(2) Is the order total?

Exercise 10:

1. Let the function be f : R — R, where z — z?and let be.A = [—1,4] find :
- The direct image of the set A by application f .
- The reciprocal (inverse) image of the set A by application f.

2. *Let the function be sin : R — R.
- What is the direct image of the set R, the set [0, 27| and the set [0, 7/2]?
- What is the inverse image of set [0, 1], the set [3,4] and the set [1,2]?

Exercise 11: Show that the following functions are maps and then check whether they are
injective, surjective or bijective

fi1:72 — Z,nw— 2n, fo:Z —N,ns4n?+5

fs:R— R, 2+ 22 fi:R— R+, z— 2%

Exercise 12: Let the functions f and g defined from N to N by the following:

’ If x is even
— v
z)=2x and g(z) =< 2’
/@) 9(z) {O, If z is odd

Find go f and f o g. Are the functions f and g injective, surjective or bijective?

Exercise 13: Show by recurrence
1. For any n € N : 5n? 4+ n is divisible by 6. (Indication n (n + 1) = 2p, p € N).
2. *For any n € N: 2" > n.

1—2"

1—x

3. ¥MfrAlL,z2eR,n>1:14+a+22+ . +a" 1=



Correction of exercises

Exercise 1.

1 We have
A=1{1,3,7,9,12}, B={1,3,2}, C ={3,4,7,9}, D ={3,1}.

Then AN B = {1,3}, Card (AN B) = 2, A\B = {7,9,12} , Card(A\B) =
AAB = (AUB)\(ANB) ={1,3,2,7,9, 12}\{1 3} =1{2,7,9,12}, Card(AAB)
DxC = {31} x {3,479} = {(3,3),(3,4), (3.7),(3.9), (1,3), (1,4), (1,7), (1,
Card(D x C) =8, BNC = {3}, Card(BNC) =1, Lp(A4) = 0, Card (Cp(4))
Ca(D) ={7,9,12}, Card (Ca(D)) =3, DUA= A, Card(D U A) =5,

P(C) = {@{3} A4 ATHA{9N {341, {3, 71 {3, 9}, {4, 7}, {4, 9}, {7, 9}, }
(3,4,7),13,4,9}, {3,7,9},{4,7,9}, {3,4,7,9}

3,
= 4,
9},
=0

)

Card(P(C)) = 200d©) = 21 = 16.
F=1[-2,1[N] — 00,0], ¥*E = [-2,1[U] — 00,0], *G = [-2,1[A] — 00,0], *H = Cx(F).

[
G =[-2,1[A] — 00,0] = [-2,1[\] — 00, 0]U] — 00,0] \ [-2,1[=]0,1[ U ]|—00, —2|

F =[-2,1]N] — 00,0] = [-2,0], £ = [-2,1[U] — 00,0] =] — 00, 1],
]
H = (g(F) =] — 00, —2[U]0, +o0].

Exercise 2.

1) false, 2) false, 3) true, 4) false, 5) false, 6) false:, 7) true.

Exercise 3: If we have C' C AU B, is it because C' C A or C C B?

It is not true to take for example : A = {1,2}, B = {3,4}, C = {2,3}.

Exercise 4: Every time we prove double containment.

. AnB)UC =(AUC)N(BUCQC)

Let z € (ANB)UC and from it z € Aand x € Borz € C If (x € A and x € B), then
xr € AUC and z € BU C, the containment is proved. If € C in this case, we also have
ax€eAUCand z € BUC.

On the other hand if x € AUC and = € BU C, we distinguish between two cases: if z € C,
then .x € (AN B)UC. Otherwise, x ¢ C, but since z € AU C we have € A, similarly
since z € BUC then x € B this proves that € AN B, consequently x € (AN B)UC

2. (A=A

Let z € (A°)° and from it © ¢ A° = = € A.On the other hand if x € A, then z ¢ A°,
consequently = € (A°)°.

3. (ANB) = A°UB*

Let x € (AN B)° then = ¢ (AN B), as we have © ¢ A or x ¢ B, that is z € A° or z € B°.
We conclude that = € A°U B¢ On the other hand if x € A°U B then z € A° or z € B¢,
that is, z ¢ A or z ¢ B, inparticular, x ¢ AN B, consequently = € (AN B)°

4.We can also introduce the above logic in the equivalence model.



re€(AUB) < x¢ AUB
sSr¢Aandr ¢ B
S re A%and x € B¢
x € A°N B¢

Exercise 5: E = {a,b,c,d}

0,{a},{b},{c},{d} ,{a,b} {a,c},{a,d},{b,c},{b,d}, {c d},
P(E) :{ {a,b.c} {a,b.d} {a.c.d}, (b e} {a,b,c, d} }

Exercise 6: To prove the equality (A x B)N(C x D) = (ANC) x (BN D)., we need to
show that each side is a subset of the other.

Step 1: Show that (A x B)N(C x D) C (ANC) x (BND).

Let (z,y) € (A x B)N(C x D).By definition of intersection, this means: (z,y) € A x B and
(z,y) € C x D

From (z,y) € A x B, we have z € A and y € B From (z,y) € C' x D, we have x € C and
yeD

Since x € A and z € C , it follows that x € AN C. Similarly, since y € Band y € D , it
follows that x € BN D.

Thus, we conclude that (z,y) € (AN C) x (BN D). Therefore, we have shown:

(Ax B)N(C x D) C (ANC) x (BN D)

Step 2: Show that (ANC) x (BND)C (Ax B)N(C x D)

Let (z,y) € (ANC) x (BN D). By definition of the Cartesian product, this means: = €
(AN C) and

y € (BN D). Fromz € ANC, we have: z € A and = € C. From y € (BN D), we have:
ye Bandye D.

Thus, we conclude that: (z,y) € A x B and (z,y) € C x D.Therefore, we can conclude that
(x,y) € (Ax B) N (C x D). Thus, we have shown: (ANC)x (BND C (AxB)nN
(C' x D) .Since we have shown both inclusions:, we conclude that:

(ANC)x (BND = (Ax B)N(C x D). This completes the proof.

Exercise 7: (1) E=Z and 2Ry <z = —y

The relation is not reflexive, because 1 is not in relation with itself. Indeed, 1 # —1.The
relationship is symmetrical, because © = —y < y = —uz.It is not antisymmetric, because
1R —1 and —1R1 while —1£1.1% is not transitive. Indeed, we have IR — 1 and —1R1 and 1
and 1 are not related. This relationship is neither an equivalence relationship nor an order
relationship.

(2) E = R and 2Ry < cos® r+sin® y = 1.From the formula cos? z+sin z = 1, we deduce that
the relation is reflexive. It is also symmetrical. Indeed, if 2Ry, i.e. cos?z +sin?y = 1, so we
have cos? z +sin® x4 cos? y +sin® y = (cos? z + sin’ y) + (cos? y + sin® z) = 14 cos® y +sin®z
On the one hand, and cos? z + sin? z + cos? y +sin? y = 2,on the other hand, which leads well
cos?y + sin? x = 1 and therefore the relation is symmetric. It is not antisymmetric, because
0R27 and 27R0,while 0 # 2r. It is transitive. If 2Ry and yRz, we have cos? x + sin®y = 1
and cos?y+sin? z = 1, either by adding cos® x + (sin2 y + cos? y) +sin? z = 2, which implies
cos?x +sin? z = 1 & 2Rz We are therefore dealing with an equivalence relationship.



(3) E=Nand 2Ry < Ip,q > 1, y = px?. Where p and ¢ are natural numbers.

The relationship is reflexive (taking p = ¢ = 1), it is not symmetrical because if xRy, we
necessarily have z < y So, we have 2R4 (take p = 2,¢ = 1), while we don’t have 4R2. The
relation is antisymmetric: if xRy and yRz, , so we have + < y and y < z and so = = y.
Finally, the relation is transitive. If xRy and yRz, then there exist integers p,q,a,b > 1
such as y = prfand z = ay’.We deduce from this

z=a(pz?)’ = (ap®) 2%
and so xRz The relationship is a relationship of order.

Exercise 8:

(1) Let R be the relation defined on R? by: (21, y1)R(z2,y2) < y1 = ya.
- Let (z1,11) € R?, then 31 = y1 & (21,91)R (21,%1), so R is a reflexive relation

- Let (z1,y1), (w2,y2) € R?, we have (z1,y1)R(22,%2) < y1 = 42 & y2 = Y1 &
(w2, y2)R (21, 91)
then R is a symmetric relationship.

- Let (xl»yl), ($2,y2), (Jfg,y:s) S R?’, we have

= [y1 = y2 and yo = ys3]
= (1 = ys]
= (xlﬂ yl)R<I3, 93)7

[(z1,y1)R(22, y2) and (22, y2)R(x3, y3)]

therefore R is a transitive relation. We deduce that R is an equivalence relation.

(2) The equivalence class of (1,0), we have

C((1,0)) = {(z,y) €R*: (x,y) R(1,0)}
{(z,y) eR*:y =0} = Rx {0}

(3) Let the relation R be denied on R? by :
(21, 91)R (w2, y2) & o] +yi = 25 + 43

- Let (x1,91) € R?, we have 22 + y? = 22 + y? & (v1,y1)R (21,51), so R
is a reflexive relation.

- Let (21,91), (v2,52) € R?, we have

(1, 1) R(x2,92) (‘T% +yi = a3 ‘HJ%)
& (23 +y; = 23 +4i)
(%;?D)R(Uﬁbyl),

then R is a symmetric relationship.



- Let (21,91), (22, 92), (v3,43) € R?, we have

[(z1, 1) R (2, 92) and (23, y2)R(x3,y3)] = [2] +y; = 25 + y5 and 23 + y5 = 23 + y3]
= (o] +yi = a3 + 3]
= (xla yl)R<x37 y3)7

therefore R is a transitive relation. We deduce that R is an equivalence relation.

We deduce that R is an equivalence relation, for the equivalence class of (1,0), we have

C((L0) = {(z.y) eR*: (2,9)R(10)}
= {(z,y) eR*: 2 +y* =1}

Exercise 9: (1) Let R be the relation defined on N* by : nRm < 3k € N* : n = km.
- Let n € N*, we have
nRn < 3k e N :n=1m.

i.e. R is a reflexive relation
- Let n,m € N*, we have

[nRm and mRn] < [(Fk; € N*:n=km)and (ks € N* : m = kon)]
= (Jky, k2 € N* : n = kikon)
= (k1 ks e N* 1 kyky =1)
= ki=k=1
= n=m,

so R is an anti-Symmetric relation.
- Let n,m,p € N*, we have

["Rm and mRp] < [(Fk1 € N*:n = kym)and (Fky € N* : m = kqp)]

= (3k1, k2 € N* : n = kykaop)

= (Jk3 = k1ke € N* : n = k3p)

= nRp

therefore R is a transitive relation.

(2) The relation of order R is partial, there exists n = 2 and , n = 3 such as neither 2R3, 3R 2.

Exercise 10:

1. Let the function be f : R — R, where x — z?and let be.A = [—1,4]
- The direct image of the set A by application f
We have

f(=1,00U[0,4]) = f([-1,0)) U f([0,4])
— [0,1]U0,16] = [0, 16]



- The reciprocal (inverse) image of the set A by application f.
r € fH(A) & 2 € [~1,4], We exclude negative, then

v’ € [-1,4 = 2* €10,4] &z € [-2,2]

2. Let the function be sin : R — R.

-The direct image of the set R as of [0,27] = [—1,1].The direct image of the set
[0,7/2] = [0,1]

- The inverse image of set [0, 1]:

f71(0,1) = {x€R/ sinze[0,1]}
Y [2km, (2k 4+ 1) 7].

- The inverse image of set [3,4]: f~1([3,4]) = 0 (there is not a number of sinx € [3, 4])
- The inverse image of set[1,2]: f~1([1,2]) = f~1({1}) = {g +2km; k € Z} :

Exercise 11:

f1 is injective, not surjective (and therefore not bijective): 1 has no precedent.

fo is not injective, as (fo(—1) = fo(1) = 9) and —1 # 1. The map fo is not surjective,
because 6 € N and f, (n) =6 < n? =
f3 is not injective, as (f3(—1) = f3(1)
fa is surjective and not injective.

, has no solution in Z.

I =

1), nor surjective (-1 has no precedent.)

Exercise 12: Let the functions f and g defined from N to N by the following:

x If x is even
- Vi
f(x) =2z and g(z) =< 2’
(@) (@) 0, If zisodd

2
We have gof (x) = g (2x) but 2x is even, and therefore g (2x) = % =z.Sogof (r) =z On
the other hand, if x is even, we have fog (z) = f (g) =x. Ifzisodd fog(z) = f(0) = 0.In

particular, we have fog # go f since fog (1) =0 while go f (1) = 1.

f is not surjective, because odd numbers are not values taken by f. On the other hand, f is
injective because if f (x) = f (y), we have 2z = 2y and so = = y.

g is not injective, because g (1) = g (3) = 0, while 1 # 3. On the other hand, ¢ is surjective.
Let us take y to be any natural integer. Then, 2y is even and g (2y) = y.

From the two previous studies, we deduce by definition that neither f nor g are bijective.

Exercise 13: Show by recurrence

1. For any n € N : 5n® + n is divisible by 6. (Indication n (n + 1) = 2p, p € N).

Note
P(n)= (5n°+n) =6k, k€ Z

7



i) If n = 0, we have P (0) =0 =6 x 0, so P(0) is true.
ii) If n € N, suppose that P(n) is true. We're going to show that P(n + 1) is true.
Pin+1) = (5(n+1)>+n+1)
= (50’ +15n* + 150+ 5+ n+1)

(5n° + n + 15n° + 15n + 6)
= ((5n3 +n) +15 (712 —l—n) +6)

(6% + 15 (2p) + 6)
= 6(k+5p+1), k,peN

6m, meN

So P(n + 1) is true.
For any n € N: 2" > n.

2. ForanynZQ:1-2+2-3+...+(n—1)-n:g(n—l)(n—i-l).

Let us denote
P(n):2" >n, foralneN
for all n € N. We will prove by recurrence that P(n) is true for all n € N.
i) For n = 0 we have 2° =1 > 0, so P(0) is true.
ii) Let n € N, suppose that P(n) is true. We're going to show thatP(n + 1) is true.

2n+1 — 9n + on
> n+ 2", because by P(n) we know that 2" > n,
> n+ 1", because 2" > 1.

So P(n + 1) is true.

1—2"

3Ifa:#l,xéR,nZl:1+x+x2+...+x”_1:1 )
-

Let us denote

— 7 for v e R\ {1} andn >1

1
Pn):1+z+2°+.. . +2" 1= T

— pl

i) For n = 1 we have 1 = , so P(1) is true.

ii) Let n € N, suppose that P(n) is true. We're going to show thatP(n + 1) is true.

1_ n
Pn+1):1+x+2%+ ... +a" = 1_2 + "
B 1—a™ 4 ™ — gt

1 _;n—&—l )

1—=x

So P(n+ 1) is true.



