

Instruction. The questions mentioned by (*) are left to the students.

Exercise 1.

1 Consider the following sets

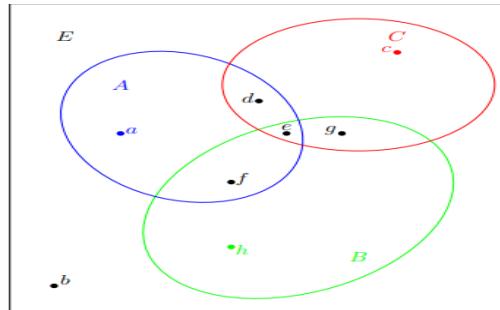
$$A = \{1, 3, 7, 9, 12\}, \quad B = \{1, 3, 2\}, \quad C = \{3, 4, 7, 9\}, \quad D = \{3, 1\}.$$

Describe the following sets and their cardinals: $A \cap B$, $A \setminus B$, $A \Delta B$, $D \times C$, ${}^*B \cap C$, $\mathfrak{C}_A(D)$, ${}^*D \cup A$, $\mathcal{P}(C)$.

2 Describe the following sets:

$$F = [-2, 1[\cap] - \infty, 0], \quad {}^*E = [-2, 1[\cup] - \infty, 0], \quad {}^*G = [-2, 1[\Delta] - \infty, 0], \quad {}^*H = \mathfrak{C}_{\mathbb{R}}(F).$$

Exercise 2: Consider the following diagram, which contains three subsets A , B , C of a set E and the elements a, b, c, d, e, f, g, h of E



Determine whether the following statements are true or false

- 1) $g \in A \cap \bar{B}$
- 2) $g \in \bar{A} \cap \bar{B}$
- 3) $g \in \bar{A} \cup \bar{B}$
- 4) $f \in \bar{A}$
- 5) $e \in \bar{A} \cap \bar{B} \cap \bar{C}$.
- 6) $\{h, b\} \subset \bar{A} \cap \bar{B}$
- 7) $\{a, f\} \subset A \cup C$.

Exercise 3: If we have $C \subset A \cup B$, is it because $C \subset A$ or $C \subset B$?

Exercise 4: Let A, B, C be three subsets of the set E , for $X \subset E$, denoted by X^c the complement of X in E .

Prove the following Morgan's laws :

$$1. (A \cap B) \cup C = (A \cup C) \cap (B \cup C) \quad {}^*2. (A^c)^c = A.$$

Exercise 5 : *Find the set of parts of the set $E = \{a, b, c, d\}$.

Exercise 6 : Let E and F be two sets, and let A and C be subsets of E and D , B be two subsets of F . Prove it

$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D).$$

Exercise 7: Determine if the relations are reflexive, symmetric, transitive, or antisymmetric.

(1) $E = \mathbb{Z}$ and $x \mathcal{R} y \Leftrightarrow x = -y$

*(2) $E = \mathbb{R}$ and $x \mathcal{R} y \Leftrightarrow \cos^2 x + \sin^2 y = 1$

*(3) $E = \mathbb{N}$ and $x \mathcal{R} y \Leftrightarrow \exists p, q \geq 1, y = px^q$. Where p and q are natural numbers.

Exercise 8: Let \mathcal{R} be the relation defined on \mathbb{R}^2 by: $(x_1, y_1) \mathcal{R} (x_2, y_2) \Leftrightarrow y_1 = y_2$.

(1) Show that \mathcal{R} is an equivalence relation.

(2) Determine the equivalence class of $(1, 0)$.

*(3) Same questions for the relation \mathcal{R} defined on \mathbb{R}^2 by: $(x_1, y_1) \mathcal{R} (x_2, y_2) \Leftrightarrow x_1^2 + y_1^2 = x_2^2 + y_2^2$.

Exercise 9: Let \mathcal{R} be the relation defined on \mathbb{N}^* by : $n \mathcal{R} m \Leftrightarrow \exists k \in \mathbb{N}^* : n = km$.

(1) Show that \mathcal{R} is a relation of order

(2) Is the order total?

Exercise 10:

1. Let the function be $f : \mathbb{R} \rightarrow \mathbb{R}$, where $x \mapsto x^2$ and let be $A = [-1, 4]$ find :

- The direct image of the set A by application f .

- The reciprocal (inverse) image of the set A by application f .

2. *Let the function be $\sin : \mathbb{R} \rightarrow \mathbb{R}$.

- What is the direct image of the set \mathbb{R} , the set $[0, 2\pi]$ and the set $[0, \pi/2]$?

- What is the inverse image of set $[0, 1]$, the set $[3, 4]$ and the set $[1, 2]$?

Exercise 11: Show that the following functions are maps and then check whether they are injective, surjective or bijective

$$f_1 : \mathbb{Z} \rightarrow \mathbb{Z}, n \mapsto 2n, \quad f_2 : \mathbb{Z} \rightarrow \mathbb{N}, n \mapsto 4n^2 + 5$$

$$f_3 : \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^2, \quad f_4 : \mathbb{R} \rightarrow \mathbb{R}^+, x \mapsto x^2.$$

Exercise 12: Let the functions f and g defined from \mathbb{N} to \mathbb{N} by the following:

$$f(x) = 2x \text{ and } g(x) = \begin{cases} \frac{x}{2}, & \text{If } x \text{ is even} \\ 0, & \text{If } x \text{ is odd} \end{cases}$$

Find $g \circ f$ and $f \circ g$. Are the functions f and g injective, surjective or bijective?

Exercise 13: Show by recurrence

1. For any $n \in \mathbb{N}$: $5n^3 + n$ is divisible by 6. (Indication $n(n+1) = 2p$, $p \in \mathbb{N}$).

2. *For any $n \in \mathbb{N}$: $2^n > n$.

3. *If $x \neq 1$, $x \in \mathbb{R}$, $n \geq 1$: $1 + x + x^2 + \dots + x^{n-1} = \frac{1 - x^n}{1 - x}$.

Correction of exercises

Exercise 1.

1 We have

$$A = \{1, 3, 7, 9, 12\}, \quad B = \{1, 3, 2\}, \quad C = \{3, 4, 7, 9\}, \quad D = \{3, 1\}.$$

Then $A \cap B = \{1, 3\}$, $\text{Card}(A \cap B) = 2$, $A \setminus B = \{7, 9, 12\}$, $\text{Card}(A \setminus B) = 3$, $A \Delta B = (A \cup B) \setminus (A \cap B) = \{1, 3, 2, 7, 9, 12\} \setminus \{1, 3\} = \{2, 7, 9, 12\}$, $\text{Card}(A \Delta B) = 4$, $D \times C = \{3, 1\} \times \{3, 4, 7, 9\} = \{(3, 3), (3, 4), (3, 7), (3, 9), (1, 3), (1, 4), (1, 7), (1, 9)\}$, $\text{Card}(D \times C) = 8$, $B \cap C = \{3\}$, $\text{Card}(B \cap C) = 1$, $\mathfrak{C}_D(A) = \emptyset$, $\text{Card}(\mathfrak{C}_D(A)) = 0$, $\mathfrak{C}_A(D) = \{7, 9, 12\}$, $\text{Card}(\mathfrak{C}_A(D)) = 3$, $D \cup A = A$, $\text{Card}(D \cup A) = 5$,

$$\mathcal{P}(C) = \left\{ \begin{array}{l} \emptyset, \{3\}, \{4\}, \{7\}, \{9\}, \{3, 4\}, \{3, 7\}, \{3, 9\}, \{4, 7\}, \{4, 9\}, \{7, 9\}, \\ \{3, 4, 7\}, \{3, 4, 9\}, \{3, 7, 9\}, \{4, 7, 9\}, \{3, 4, 7, 9\} \end{array} \right\},$$

$$\text{Card}(\mathcal{P}(C)) = 2^{\text{Card}(C)} = 2^4 = 16.$$

2

$$F = [-2, 1[\cap] - \infty, 0], \quad *E = [-2, 1[\cup] - \infty, 0], \quad *G = [-2, 1[\Delta] - \infty, 0], \quad *H = \mathfrak{C}_{\mathbb{R}}(F).$$

$$F = [-2, 1[\cap] - \infty, 0] = [-2, 0], \quad E = [-2, 1[\cup] - \infty, 0] =] - \infty, 1[,$$

$$G = [-2, 1[\Delta] - \infty, 0] = [-2, 1[\setminus] - \infty, 0] \cup] - \infty, 0] \setminus [-2, 1[=]0, 1[\cup] - \infty, -2[$$

$$H = \mathfrak{C}_{\mathbb{R}}(F) =] - \infty, -2[\cup]0, +\infty[.$$

Exercise 2.

1) false, 2) false, 3) true, 4) false, 5) false, 6) false; 7) true.

Exercise 3: If we have $C \subset A \cup B$, is it because $C \subset A$ or $C \subset B$?

It is not true to take for example : $A = \{1, 2\}$, $B = \{3, 4\}$, $C = \{2, 3\}$.

Exercise 4: Every time we prove double containment.

$$1. (A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

Let $x \in (A \cap B) \cup C$ and from it $x \in A$ and $x \in B$ or $x \in C$. If $(x \in A \text{ and } x \in B)$, then $x \in A \cup C$ and $x \in B \cup C$, the containment is proved. If $x \in C$ in this case, we also have $x \in A \cup C$ and $x \in B \cup C$.

On the other hand if $x \in A \cup C$ and $x \in B \cup C$, we distinguish between two cases: if $x \in C$, then $x \in (A \cap B) \cup C$. Otherwise, $x \notin C$, but since $x \in A \cup C$ we have $x \in A$, similarly since $x \in B \cup C$ then $x \in B$ this proves that $x \in A \cap B$, consequently $x \in (A \cap B) \cup C$

$$2. (A^c)^c = A$$

Let $x \in (A^c)^c$ and from it $x \notin A^c \Rightarrow x \in A$. On the other hand if $x \in A$, then $x \notin A^c$, consequently $x \in (A^c)^c$.

$$3. (A \cap B)^c = A^c \cup B^c$$

Let $x \in (A \cap B)^c$ then $x \notin (A \cap B)$, as we have $x \notin A$ or $x \notin B$, that is $x \in A^c$ or $x \in B^c$. We conclude that $x \in A^c \cup B^c$. On the other hand if $x \in A^c \cup B^c$ then $x \in A^c$ or $x \in B^c$, that is, $x \notin A$ or $x \notin B$, in particular, $x \notin A \cap B$, consequently $x \in (A \cap B)^c$

4. We can also introduce the above logic in the equivalence model.

$$\begin{aligned}
x \in (A \cup B)^c &\Leftrightarrow x \notin A \cup B \\
&\Leftrightarrow x \notin A \text{ and } x \notin B \\
&\Leftrightarrow x \in A^c \text{ and } x \in B^c \\
x \in A^c \cap B^c
\end{aligned}$$

Exercise 5: $E = \{a, b, c, d\}$

$$\mathcal{P}(E) = \left\{ \begin{array}{l} \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \\ \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c, d\} \end{array} \right\}$$

Exercise 6: To prove the equality $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$, we need to show that each side is a subset of the other.

Step 1: Show that $(A \times B) \cap (C \times D) \subseteq (A \cap C) \times (B \cap D)$.

Let $(x, y) \in (A \times B) \cap (C \times D)$. By definition of intersection, this means: $(x, y) \in A \times B$ and $(x, y) \in C \times D$

From $(x, y) \in A \times B$, we have $x \in A$ and $y \in B$. From $(x, y) \in C \times D$, we have $x \in C$ and $y \in D$

Since $x \in A$ and $x \in C$, it follows that $x \in A \cap C$. Similarly, since $y \in B$ and $y \in D$, it follows that $y \in B \cap D$.

Thus, we conclude that $(x, y) \in (A \cap C) \times (B \cap D)$. Therefore, we have shown:

$$(A \times B) \cap (C \times D) \subseteq (A \cap C) \times (B \cap D)$$

Step 2: Show that $(A \cap C) \times (B \cap D) \subseteq (A \times B) \cap (C \times D)$

Let $(x, y) \in (A \cap C) \times (B \cap D)$. By definition of the Cartesian product, this means: $x \in (A \cap C)$ and

$y \in (B \cap D)$. From $x \in A \cap C$, we have: $x \in A$ and $x \in C$. From $y \in (B \cap D)$, we have: $y \in B$ and $y \in D$.

Thus, we conclude that: $(x, y) \in A \times B$ and $(x, y) \in C \times D$. Therefore, we can conclude that $(x, y) \in (A \times B) \cap (C \times D)$. Thus, we have shown: $(A \cap C) \times (B \cap D) \subseteq (A \times B) \cap (C \times D)$. Since we have shown both inclusions, we conclude that:

$(A \cap C) \times (B \cap D) = (A \times B) \cap (C \times D)$. This completes the proof.

Exercise 7: (1) $E = \mathbb{Z}$ and $x \mathcal{R} y \Leftrightarrow x = -y$

The relation is not reflexive, because 1 is not in relation with itself. Indeed, $1 \neq -1$. The relationship is symmetrical, because $x = -y \Leftrightarrow y = -x$. It is not antisymmetric, because $1 \mathcal{R} -1$ and $-1 \mathcal{R} 1$ while $-1 \neq 1$. It is not transitive. Indeed, we have $1 \mathcal{R} -1$ and $-1 \mathcal{R} 1$ and 1 and 1 are not related. This relationship is neither an equivalence relationship nor an order relationship.

(2) $E = \mathbb{R}$ and $x \mathcal{R} y \Leftrightarrow \cos^2 x + \sin^2 y = 1$. From the formula $\cos^2 x + \sin^2 x = 1$, we deduce that the relation is reflexive. It is also symmetrical. Indeed, if $x \mathcal{R} y$, i.e. $\cos^2 x + \sin^2 y = 1$, so we have $\cos^2 x + \sin^2 x + \cos^2 y + \sin^2 y = (\cos^2 x + \sin^2 y) + (\cos^2 y + \sin^2 x) = 1 + \cos^2 y + \sin^2 x$. On the one hand, and $\cos^2 x + \sin^2 x + \cos^2 y + \sin^2 y = 2$, on the other hand, which leads well $\cos^2 y + \sin^2 x = 1$ and therefore the relation is symmetric. It is not antisymmetric, because $0 \mathcal{R} 2\pi$ and $2\pi \mathcal{R} 0$, while $0 \neq 2\pi$. It is transitive. If $x \mathcal{R} y$ and $y \mathcal{R} z$, we have $\cos^2 x + \sin^2 y = 1$ and $\cos^2 y + \sin^2 z = 1$, either by adding $\cos^2 x + (\sin^2 y + \cos^2 y) + \sin^2 z = 2$, which implies $\cos^2 x + \sin^2 z = 1 \Leftrightarrow x \mathcal{R} z$. We are therefore dealing with an equivalence relationship.

(3) $E = \mathbb{N}$ and $x\mathcal{R}y \Leftrightarrow \exists p, q \geq 1, y = px^q$. Where p and q are natural numbers.

The relationship is reflexive (taking $p = q = 1$), it is not symmetrical because if $x\mathcal{R}y$, we necessarily have $x \leq y$. So, we have $2\mathcal{R}4$ (take $p = 2, q = 1$), while we don't have $4\mathcal{R}2$. The relation is antisymmetric: if $x\mathcal{R}y$ and $y\mathcal{R}z$, so we have $x \leq y$ and $y \leq z$ and so $x = z$. Finally, the relation is transitive. If $x\mathcal{R}y$ and $y\mathcal{R}z$, then there exist integers $p, q, a, b \geq 1$ such as $y = px^q$ and $z = ay^b$. We deduce from this

$$z = a(px^q)^b = (ap^b)x^{bq}$$

and so $x\mathcal{R}z$. The relationship is a relationship of order.

Exercise 8:

(1) Let \mathcal{R} be the relation defined on \mathbb{R}^2 by: $(x_1, y_1)\mathcal{R}(x_2, y_2) \Leftrightarrow y_1 = y_2$.

- Let $(x_1, y_1) \in \mathbb{R}^2$, then $y_1 = y_1 \Leftrightarrow (x_1, y_1)\mathcal{R}(x_1, y_1)$, so \mathcal{R} is a reflexive relation
- Let $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$, we have $(x_1, y_1)\mathcal{R}(x_2, y_2) \Leftrightarrow y_1 = y_2 \Leftrightarrow y_2 = y_1 \Leftrightarrow (x_2, y_2)\mathcal{R}(x_1, y_1)$
then \mathcal{R} is a symmetric relationship.
- Let $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in \mathbb{R}^3$, we have

$$\begin{aligned} [(x_1, y_1)\mathcal{R}(x_2, y_2) \text{ and } (x_2, y_2)\mathcal{R}(x_3, y_3)] &\Rightarrow [y_1 = y_2 \text{ and } y_2 = y_3] \\ &\Rightarrow [y_1 = y_3] \\ &\Rightarrow (x_1, y_1)\mathcal{R}(x_3, y_3), \end{aligned}$$

therefore \mathcal{R} is a transitive relation. We deduce that \mathcal{R} is an equivalence relation.

(2) The equivalence class of $(1, 0)$, we have

$$\begin{aligned} \mathcal{C}((1, 0)) &= \{(x, y) \in \mathbb{R}^2 : (x, y) \mathcal{R} (1, 0)\} \\ &= \{(x, y) \in \mathbb{R}^2 : y = 0\} = \mathbb{R} \times \{0\} \end{aligned}$$

(3) Let the relation \mathcal{R} be defined on \mathbb{R}^2 by :

$$(x_1, y_1)\mathcal{R}(x_2, y_2) \Leftrightarrow x_1^2 + y_1^2 = x_2^2 + y_2^2$$

- Let $(x_1, y_1) \in \mathbb{R}^2$, we have $x_1^2 + y_1^2 = x_1^2 + y_1^2 \Leftrightarrow (x_1, y_1)\mathcal{R}(x_1, y_1)$, so \mathcal{R} is a reflexive relation.
- Let $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$, we have

$$\begin{aligned} (x_1, y_1)\mathcal{R}(x_2, y_2) &\Leftrightarrow (x_1^2 + y_1^2 = x_2^2 + y_2^2) \\ &\Leftrightarrow (x_2^2 + y_2^2 = x_1^2 + y_1^2) \\ &\Leftrightarrow (x_2, y_2)\mathcal{R}(x_1, y_1), \end{aligned}$$

then \mathcal{R} is a symmetric relationship.

· Let $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in \mathbb{R}^3$, we have

$$\begin{aligned} [(x_1, y_1)\mathcal{R}(x_2, y_2) \text{ and } (x_2, y_2)\mathcal{R}(x_3, y_3)] &\Rightarrow [x_1^2 + y_1^2 = x_2^2 + y_2^2 \text{ and } x_2^2 + y_2^2 = x_3^2 + y_3^2] \\ &\Rightarrow [x_1^2 + y_1^2 = x_3^2 + y_3^2] \\ &\Rightarrow (x_1, y_1)\mathcal{R}(x_3, y_3), \end{aligned}$$

therefore \mathcal{R} is a transitive relation. We deduce that \mathcal{R} is an equivalence relation.

We deduce that \mathcal{R} is an equivalence relation, for the equivalence class of $(1, 0)$, we have

$$\begin{aligned} \mathcal{C}((1, 0)) &= \{(x, y) \in \mathbb{R}^2 : (x, y) \mathcal{R} (1, 0)\} \\ &= \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\} \end{aligned}$$

Exercise 9: (1) Let \mathcal{R} be the relation defined on \mathbb{N}^* by : $n\mathcal{R}m \Leftrightarrow \exists k \in \mathbb{N}^* : n = km$.

· Let $n \in \mathbb{N}^*$, we have

$$n\mathcal{R}n \Leftrightarrow \exists k \in \mathbb{N}^* : n = 1m.$$

i.e. \mathcal{R} is a reflexive relation

· Let $n, m \in \mathbb{N}^*$, we have

$$\begin{aligned} [n\mathcal{R}m \text{ and } m\mathcal{R}n] &\Leftrightarrow [(\exists k_1 \in \mathbb{N}^* : n = k_1m) \text{ and } (\exists k_2 \in \mathbb{N}^* : m = k_2n)] \\ &\Rightarrow (\exists k_1, k_2 \in \mathbb{N}^* : n = k_1k_2n) \\ &\Rightarrow (\exists k_1, k_2 \in \mathbb{N}^* : k_1k_2 = 1) \\ &\Rightarrow k_1 = k_2 = 1 \\ &\Rightarrow n = m, \end{aligned}$$

so \mathcal{R} is an anti-Symmetric relation.

· Let $n, m, p \in \mathbb{N}^*$, we have

$$\begin{aligned} [n\mathcal{R}m \text{ and } m\mathcal{R}p] &\Leftrightarrow [(\exists k_1 \in \mathbb{N}^* : n = k_1m) \text{ and } (\exists k_2 \in \mathbb{N}^* : m = k_2p)] \\ &\Rightarrow (\exists k_1, k_2 \in \mathbb{N}^* : n = k_1k_2p) \\ &\Rightarrow (\exists k_3 = k_1k_2 \in \mathbb{N}^* : n = k_3p) \\ &\Rightarrow n\mathcal{R}p \end{aligned}$$

therefore \mathcal{R} is a transitive relation.

(2) The relation of order \mathcal{R} is partial, there exists $n = 2$ and $n = 3$ such as neither $2\mathcal{R}3, 3\mathcal{R}2$.

Exercise 10:

1. Let the function be $f : \mathbb{R} \rightarrow \mathbb{R}$, where $x \mapsto x^2$ and let be $A = [-1, 4]$

- The direct image of the set A by application f

We have

$$\begin{aligned} f([-1, 0] \cup [0, 4]) &= f([-1, 0]) \cup f([0, 4]) \\ &= [0, 1] \cup [0, 16] = [0, 16] \end{aligned}$$

- The reciprocal (inverse) image of the set A by application f .

$x \in f^{-1}(A) \Leftrightarrow x^2 \in [-1, 4]$, We exclude negative, then

$$x^2 \in [-1, 4] \Rightarrow x^2 \in [0, 4] \Leftrightarrow x \in [-2, 2]$$

2. Let the function be $\sin : \mathbb{R} \rightarrow \mathbb{R}$.

-The direct image of the set \mathbb{R} as of $[0, 2\pi] = [-1, 1]$. The direct image of the set $[0, \pi/2] = [0, 1]$

- The inverse image of set $[0, 1]$:

$$\begin{aligned} f^{-1}([0, 1]) &= \{x \in \mathbb{R} / \sin x \in [0, 1]\} \\ &= \bigcup_{k \in \mathbb{Z}} [2k\pi, (2k+1)\pi]. \end{aligned}$$

- The inverse image of set $[3, 4]$: $f^{-1}([3, 4]) = \emptyset$ (there is not a number of $\sin x \in [3, 4]$)

- The inverse image of set $[1, 2]$: $f^{-1}([1, 2]) = f^{-1}(\{1\}) = \left\{ \frac{\pi}{2} + 2k\pi; k \in \mathbb{Z} \right\}$.

Exercise 11:

f_1 is injective, not surjective (and therefore not bijective): 1 has no precedent.

f_2 is not injective, as $(f_2(-1) = f_2(1) = 9)$ and $-1 \neq 1$. The map f_2 is not surjective, because $6 \in \mathbb{N}$ and $f_2(n) = 6 \Leftrightarrow n^2 = \frac{1}{4}$, has no solution in \mathbb{Z} .

f_3 is not injective, as $(f_3(-1) = f_3(1) = 1)$, nor surjective (-1 has no precedent.)

f_4 is surjective and not injective.

Exercise 12: Let the functions f and g defined from \mathbb{N} to \mathbb{N} by the following:

$$f(x) = 2x \text{ and } g(x) = \begin{cases} \frac{x}{2}, & \text{If } x \text{ is even} \\ 0, & \text{If } x \text{ is odd} \end{cases}$$

We have $g \circ f(x) = g(2x)$ but $2x$ is even, and therefore $g(2x) = \frac{(2x)}{2} = x$. So $g \circ f(x) = x$ On

the other hand, if x is even, we have $f \circ g(x) = f\left(\frac{x}{2}\right) = x$. If x is odd $f \circ g(x) = f(0) = 0$. In particular, we have $f \circ g \neq g \circ f$ since $f \circ g(1) = 0$ while $g \circ f(1) = 1$.

f is not surjective, because odd numbers are not values taken by f . On the other hand, f is injective because if $f(x) = f(y)$, we have $2x = 2y$ and so $x = y$.

g is not injective, because $g(1) = g(3) = 0$, while $1 \neq 3$. On the other hand, g is surjective. Let us take y to be any natural integer. Then, $2y$ is even and $g(2y) = y$.

From the two previous studies, we deduce by definition that neither f nor g are bijective.

Exercise 13: Show by recurrence

1. For any $n \in \mathbb{N}$: $5n^3 + n$ is divisible by 6. (Indication $n(n+1) = 2p$, $p \in \mathbb{N}$).

Note

$$P(n) = (5n^3 + n) = 6k, \quad k \in \mathbb{Z}$$

i) If $n = 0$, we have $P(0) = 0 = 6 \times 0$, so $P(0)$ is true.
ii) If $n \in \mathbb{N}$, suppose that $P(n)$ is true. We're going to show that $P(n + 1)$ is true.

$$\begin{aligned}
P(n + 1) &= (5(n + 1)^3 + n + 1) \\
&= (5n^3 + 15n^2 + 15n + 5 + n + 1) \\
&= (5n^3 + n + 15n^2 + 15n + 6) \\
&= ((5n^3 + n) + 15(n^2 + n) + 6) \\
&= (6k + 15(2p) + 6) \\
&= 6(k + 5p + 1), \quad k, p \in \mathbb{N} \\
&= 6m, \quad m \in \mathbb{N}
\end{aligned}$$

So $P(n + 1)$ is true.

For any $n \in \mathbb{N}$: $2^n > n$.

2. For any $n \geq 2$: $1 \cdot 2 + 2 \cdot 3 + \dots + (n - 1) \cdot n = \frac{n}{3}(n - 1)(n + 1)$.

Let us denote

$$P(n) : 2^n > n, \text{ for all } n \in \mathbb{N}$$

for all $n \in \mathbb{N}$. We will prove by recurrence that $P(n)$ is true for all $n \in \mathbb{N}$.

i) For $n = 0$ we have $2^0 = 1 > 0$, so $P(0)$ is true.
ii) Let $n \in \mathbb{N}$, suppose that $P(n)$ is true. We're going to show that $P(n + 1)$ is true.

$$\begin{aligned}
2^{n+1} &= 2^n + 2^n \\
&> n + 2^n, \text{ because by } P(n) \text{ we know that } 2^n > n, \\
&\geq n + 1^n, \text{ because } 2^n \geq 1.
\end{aligned}$$

So $P(n + 1)$ is true.

3 If $x \neq 1$, $x \in \mathbb{R}$, $n \geq 1$: $1 + x + x^2 + \dots + x^{n-1} = \frac{1 - x^n}{1 - x}$.

Let us denote

$$P(n) : 1 + x + x^2 + \dots + x^{n-1} = \frac{1 - x^n}{1 - x}, \text{ for } x \in \mathbb{R} \setminus \{1\} \text{ and } n \geq 1$$

i) For $n = 1$ we have $1 = \frac{1 - x^1}{1 - x}$, so $P(1)$ is true.
ii) Let $n \in \mathbb{N}$, suppose that $P(n)$ is true. We're going to show that $P(n + 1)$ is true.

$$\begin{aligned}
P(n + 1) : 1 + x + x^2 + \dots + x^n &= \frac{1 - x^n}{1 - x} + x^n \\
&= \frac{1 - x^n + x^n - x^{n+1}}{1 - x} \\
&= \frac{1 - x^{n+1}}{1 - x},
\end{aligned}$$

So $P(n + 1)$ is true.