
Chapter 3

Real Functions of a Real Variable
Dr.L. DERBAL

3.1 Introduction

In this chapter the key notion of a continuous function is introduced, followed by several

important theorems about continuous functions. We deal exclusively with functions

taking values in the set of real numbers (that is, real-valued functions).

3.1.1 Bounded functions, monotonic functions

Definition 3.1.1 Let f : D ⊆ R→ R be a function. It is said that
a) f is said to be bounded above on D if

∃M ∈ R, ∀x ∈ D : f(x) ≤M.

b) f is said to be bounded below on D if

∃m ∈ R, ∀x ∈ D : f(x) ≥ m.

c) f is bounded on D if f is both bounded above and below on D, i.e. if

∃M > 0,∀x ∈ D : |f(x)| ≤M or ∃M ,∃m ∈ R,∀x ∈ D : m ≤ f(x) ≤M .

1/ f(x) = cos (x) is bounded because ∀x ∈ R : −1 ≤ cos (x) ≤ 1.

2/ f(x) = ex is bounded below because ∀x ∈ R : ex > 0.

3/ f(x) = x2is not bounded.

35
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Definition 3.1.2 Let f : D → R be a function. We say that:
a) f is increasing over D if

∀x, y ∈ D, x < y ⇒ f(x) ≤ f(y).

b) f is strictly increasing over D if

∀x, y ∈ D, x < y ⇒ f(x) < f(y).

c)f is decreasing over D if

∀x, y ∈ D, x < y ⇒ f(x) ≥ f(y).

d) f is strictly decreasing over D if

∀x, y ∈ D, x < y ⇒ f(x) > f(y).

e) f is monotonic (or strictly monotonic) on D if f is increasing or decreasing (or

strictly increasing or decreasing) on D.

i) The exponential function exp : R→ R is strictly increasing.

ii) The absolute value function x→ |x| defined on R is not monotonic.

3.1.2 Odd, even, periodic function

Definition 3.1.3 (Parity) Let I be a symmetric interval with respect to 0 in R . Let
f : I → R be a function. We say that:

i) f is even if ∀x ∈ I : f(−x) = f(x).

ii) f is odd if ∀x ∈ I : f(−x) = −f(x).

Remark 3.1.4 f is even if and only if its graph is symmetric with respect to the y-axis

and f is odd if and only if its graph is symmetric with respect to at the origin.

Figure 13 : Even function Figure 14 : Odd function
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Figure 15 : Parity function

(a) For any even integer n, f (x) = axn is an even function,

(b) For any odd integer n, f (x) = axn, is an odd function.

Definition 3.1.5 (Periodicity) Let f : R→ R be a function and T be a real number,
T > 0. The function f is called periodic of period T if ∀x ∈ R, f(x+ T ) = f(x).

Figure 16: Periodic function

Example 3.1.6 The functions sin and cos are 2π-periodic. The tangent function is

π-periodic.

3.1.3 Algebraic operations on functions

The set of functions of D ⊂ R in R, is denoted F(D,R).

Definition 3.1.7 Let f and g ∈ F(D,R) and λ ∈ R. We define
• Sum of two functions f + g : x→ (f + g)(x) = f(x) + g(x).

• For λ ∈ R, λf : x→ (λf)(x) = λf(x).

• Product of two functions fg : x→ (fg)(x) = f(x)g(x).
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Remark 3.1.8 The functions f + g, λf and fg are functions belonging to F(D,R).

Figure 17: Sum of functions

Definition 3.1.9 Let f and g ∈ F(D,R), we say that

•f ≤ g if ∀x ∈ D, f(x) ≤ g(x).

• f < g if ∀x ∈ D, f(x) < g(x).

Example 3.1.10 Let f and g be two functions defined on ]0, 1[ by f(x) = x, g(x) = x2

. We have g < f , because ∀x ∈]0, 1[ , x2 < x.

3.1.4 Limit of a function

General definitions

Let f : I → R be a function defined over an interval I of R. Let x0 ∈ R be a point of I
or an end of I.

Definition 3.1.11 Let l ∈ R. We say that f has l for limit in x0 if,

∀ε > 0, ∃δ > 0, ∀x ∈ I, |x− x0| < δ ⇒ |f(x)− l| < ε.

In this case, we write lim
x→x0

f (x) = l.

Example 3.1.12 Consider the function f(x) = 2x − 1 which is defined on R. At the
point x = 1, we have lim

x→1
f (x) = 1. Indeed, for all ε > 0, we have |f(x)−1| = 2|x−1| < ε,

if we have |x− 1| < ε

2
. The right choice will then be to take δ =

ε

2
.

Uniqueness of the limit

Proposition 3.1.13 If f admits a limit at the point x0, this limit is unique.
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Proof. If f admits two limits l1 and l2 at the point x0, then we have, by definition,
∀ε > 0,

∃δ1 > 0,∀x ∈ I, if |x− x0| < δ1 ⇒ |f(x)− l1| <
ε

2
.

∃δ2 > 0,∀x ∈ I, if |x− x0| < δ2 ⇒ |f(x)− l2| <
ε

2
.

Let δ = min(δ1, δ2) > 0, then

|l1 − l2| ≤ |f(x)− l1|+ |f(x)− l2| ≤ ε

Since ε is any, for ε =
|l1 − l2|

2
results in l1 = l2.

Limit to the right, limit to the left.

Definition 3.1.14 We say that the function f admits l as the limit to the right of x0,
as x tends to x+0 , if for all ε > 0 there exists a δ > 0, such that: x0 < x < x0 + δ, results

in |f(x)− l| ≤ ε. In this case, we will write:

lim
x→x+0

f (x) = l or lim
x
>→x0

f (x) = l.

We say that the function f admits l as the limit to the left of x0, as x tends to x−0 ,

if for all ε > 0 there exists a δ > 0, such that: x0 − δ < x < x0, results in |f(x)− l| ≤ ε.
In this case, we will write:

lim
x→x−0

f (x) = l or lim
x
<→x0

f (x) = l.

Example 3.1.15 The function x ∈ R+ →
√
x tends to 0 when x→ 0+.

Remark 3.1.16 If a function f has a limit l to the left of the point x0 and a limit l′to
the right of x0, then the existence of a limit of x0, is both necessary and suffi cient for

l = l′.

Example 3.1.17 Consider the function defined by

f(x) =

{
1, if x ≥ 0,

−1, if x < 0.

It admits 1 as the limit to the right of 0 and −1 as the limit to the left of 0. But it does

not admit any limit to point 0.
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Cases where x becomes infinite

We will pose by definition

a) lim
x→+∞

f (x) = l, if

∀ε > 0, ∃A > 0, such that x > A⇒ |f(x)− l| < ε.

b) lim
x→−∞

f (x) = l, if

∀ε > 0, ∃A > 0, such that x < −A⇒ |f(x)− l| < ε.

Infinite Limit

Let x0 ∈ R. By definition, we pose

a) lim
x→x0

f (x) = +∞,

∀A > 0, ∃δ > 0, such that |x− x0| < δ ⇒ f(x) > A.

b) lim
x→x0

f (x) = −∞, if

∀A > 0, ∃δ > 0, such that |x− x0| < δ ⇒ f(x) < −A.

If x0 = +∞ or x0 = −∞, we put

a) lim
x→+∞

f (x) = +∞,

∀A > 0, ∃B > 0, such that x > B ⇒ f(x) > A.

b) lim
x→−∞

f (x) = +∞,

∀A > 0, ∃B > 0, such that x < −B ⇒ f(x) > A.

c) lim
x→+∞

f (x) = −∞,

∀A > 0, ∃B > 0, such that x > B ⇒ f(x) < −A.

d) lim
x→−∞

f (x) = −∞,

∀A > 0, ∃B > 0, such that x < −B ⇒ f(x) < −A.
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3.1.5 Limit theorems

Theorem 3.1.18 Let f : [a, b] → R and x0 ∈]a, b[. The following two properties are

equivalent:

(1) lim
x→x0

f (x) = l,

(2) For any sequence (xn)n∈N, xn ∈]a, b[ such that lim
n→+∞

xn = x0, then lim
n→+∞

f (xn) =

l.

Exercise 3.1.19 1) lim
x→0

sin
(
1
x

)
does not exist, and 2) lim

x→0
x sin

(
1
x

)
= 0.

Solution 3.1.20 In fact :
1) Let xn = 1

(2n+1)π
2
, we have : xn 6= 0 and xn → 0 if n→ +∞. But

sin

(
1

xn

)
= sin

(
(2n+ 1)

π

2

)
= (−1)n ,

for all n ∈ N. However, this sequence does not converge (i.e. the limit does not exist).
2) Suppose xn 6= 0 and xn → 0. Then

0 ≤
∣∣∣∣xn sin

(
1

xn

)∣∣∣∣ = |xn|
∣∣∣∣sin( 1

xn

)∣∣∣∣ ≤ |xn| .
By the Gendarmes’Theorem, lim

n→+∞

∣∣∣xn sin
(
1
xn

)∣∣∣ = 0.

3.1.6 Operations of Limits

Theorem 3.1.21 Let f, g : [a, b] → R and x0 ∈]a, b[, such that lim
x→x0

f (x) = l and

lim
x→x0

g (x) = l′, Then

a) lim
x→x0

[f (x) + g (x)] = l + l′.

b) lim
x→x0

(λf (x)) = λl for any λ ∈ R.
c) lim

x→x0
f (x) .g (x) = ll′.

d) lim
x→x0

|f (x)| = |l| .
e) lim

x→x0
|f (x)− l| = 0.

f) lim
x→x0

f (x)

g (x)
=
l

l′
, if l′ 6= 0.

Theorem 3.1.22 Let f : [a, b]→ [c, d] and g : [c, d]→ R and x0 ∈]a, b[, y0 ∈ [c, d], such

that lim
x→x0

f (x) = y0 and lim
x→y0

g (y) = l Then lim
x→x0

(g ◦ f) (x) = l.
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Proposition 3.1.23 Let f, g : [a, b]→ R and x0 ∈]a, b[, we have

a) If lim
x→x0

f (x) = +∞, then lim
x→x0

1

f (x)
= 0.

b) If lim
x→x0

f (x) = −∞, then lim
x→x0

1

f (x)
= 0.

c) If f ≤ g, and lim
x→x0

f (x) = l, lim
x→x0

g (x) = l′, then l ≤ l′.
d) If f ≤ g, and lim

x→x0
f (x) = +∞, then lim

x→x0
g (x) = +∞.

Theorem 3.1.24 Let f, g, h : [a, b]→ R and x0 ∈]a, b[, we have

i) f(x) ≤ g(x) ≤ h(x), for all x ∈]a, b[ ,

ii) lim
x→x0

f (x) = lim
x→x0

h (x) = l ∈ R.
Then lim

x→x0
g (x) = l.

Indeterminate forms

+∞−∞, 0×∞, ∞∞ ,
0

0
, 1∞, ∞0.

Proposition 3.1.25 Let f and g be two functions if:
1) f is a bounded function in the neighbourhood of x0 (∃D a neighbourhood of x0)

s.t

∃m,M ∈ R,∀x ∈ D : m ≤ f(x) ≤M

2) lim
x→x0

g (x) = 0.

Then lim
x→x0

f(x)× g (x) = 0

Example 3.1.26 Calculate the limit lim
x→+∞

sinx

x
.

Indeed : sin(∞) is not defined but it is bounded because | sinx| ≤ 1 and lim
x→+∞

1

x
= 0,

so lim
x→+∞

sinx

x
= 0.

Equivalent functions

Definition 3.1.27 Let f and g be two functions defined in a neighborhood of a point x0
(x0 ∈ R or x0 = ±∞).

We assume, moreover, that g does not cancel in a neighborhood of x0, except perhaps

in x0 where we can have g(x0) = 0.

We say that f is equivalent to g in a neighborhood of x0 if, and only if: lim
x→x0

f (x)

g (x)
= 1

We denote this by f ∼
x0
g. We also say that f and g are equivalent to the neighborhood

of x0 or in x0.
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1) The functions f(x) = ln(x+ 1) and g(x) = x are equivalent since lim
x→0

ln(x+ 1)

x
= 1.

We note ln(x+ 1) ∼
0
x.

2) Always, in the vicinity of zero, sinx ∼ x because lim
x→0

sinx

x
= 1.

3.2 Continuity of a function

3.2.1 General definition

Definition 3.2.1 Let us consider a function f : I → R, where I is an interval of R.
We say that f is continuous at the point x0 ∈ I if lim

x→x0
f (x) = f(x0), i.e. if

∀ε > 0, ∃δ > 0,∀x ∈ I, |x− x0| < δ ⇒ |f(x)− f(x0)| < ε.

Figure 18: Continuity at the point x0

Example 3.2.2 Let the real function f be denied by

f (x) =

 x sin

(
1

x

)
, if x 6= 0,

0, if x = 0.

At the point x0 = 0, we have

|f(x)− f(x0)| = |x sin

(
1

x

)
| ≤ |x| .

For ε > 0, we will choose δ = ε. Thus

|x| < δ ⇒ |f(x)− f(x0)| < ε

So f is continuous at the point x0 = 0.

Definition 3.2.3 A function defined on an interval I is continuous on I if it is con-

tinuous at any point of I. The set of continuous functions on I is denoted by C(I).
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Continuity on the left, continuity on the right

Definition 3.2.4 Let us consider a function f : I → R, where I is an interval of R.
(1) The function f is said to be continuous on the left at x0 if lim

x→x−0
f (x) = f(x0),

i.e.

∀ε > 0,∃δ > 0, ∀x ∈ I, 0 < x0 − x < δ ⇒ |f(x)− f(x0)| < ε

(2) The function f is said to be continuous on the right at x0 if lim
x→x+0

f (x) = f(x0), i.e.

∀ε > 0, ∃δ > 0, ∀x ∈ I, 0 < x− x0 < δ ⇒ |f(x)− f(x0)| < ε.

Figure 19: Left (right)Continuous at x=a

Note. The function f is continuous at x0 if and only if f is continuous to the left
and right of the point x0. f is continuous at x0 ⇔ lim

x→x−0
f (x) = lim

x→x+0
f (x) = f(x0).

Summary of discontinuities

Figure 20 : discontinuity at point a
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Example 3.2.5 The function defined by

f (x) =

{
1 if x > 0,

−1 if x ≤ 0.

is continuous on R∗. At the point x0 = 0, the function f is continuous on the left, but

it is not continuous on the right because

lim
x→0−

f (x) = f(0) = −1 and lim
x→0+

f (x) = 1 6= f(0)

Figure 21 : discontinuity at point 0

Definition 3.2.6 (Continuity on a closed interval.) A function f is continuous on
the closed interval [a, b] if :

1. it is continuous on the open interval (a, b) ;

2. it is right continuous at point a :

lim
x→a+

f (x) = f(a);

and

3. it is left continuous at point b :

lim
x→b−

f (x) = f(b).

Example 3.2.7 The function f (x) =
√
x is continuous on the (closed) interval [0,+∞) .

The function f (x) =
√

4− x is continuous on the (closed) interval (−∞, 4] .
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Continuity extension

Definition 3.2.8 Let I be an interval, x0 a point of I. If the function f is not defined
at the point x0 ∈ I and admits at this point a finite limit denoted l, the function defined
by

f̃ (x) =

{
f (x) , if x 6= x0,

l, if x = x0.

is said to be a continuity extension of f at the point x0.

Example 3.2.9 The function

f(x) = x sin
1

x

is defined and continues on R∗. Now, for all x ∈ R∗ we have

|f(x)| =
∣∣∣∣x sin

1

x

∣∣∣∣ ≤ |x|
So lim

x→0
f (x) = 0. The continuity extension of f to the point 0 is therefore the function

f̃ defined by:

f̃ (x) =

 x sin
1

x
, if x 6= 0,

0, if x = 0.

3.2.2 Operations on continuous functions

Definition 3.2.10 Let I be an interval, and f and g functions defined on I and con-
tinuous at x0 ∈ I. Then

(1) λf is continuous at x0, (λ ∈ R).

(2) f + g is continuous at x0.

(3) f.g is continuous at x0.

(4)
f

g
(if g(x0) 6= 0) is continuous at x0.

3.2.3 Continuity of composition function

Theorem 3.2.11 If g is continuous at x0 and f is continuous at g (x0), then the com-

position function f ◦ g is continuous at x0.

Theorem 3.2.12 If f : [a, b]→ R is continuous then f is bounded.
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Definition 3.2.13 (Absolute Minimum / Maximum) Let I be an interval and f :

I → R. Then, f achieves an absolute minimum at c ∈ I,if ∀x ∈ I, f (x) ≥ f (c).

Similarly, f achieves an absolute maximum at d ∈ I,if ∀x ∈ I, f (x) ≤ f (d).

Figure 22 : Maximum and minimum

3.2.4 The Intermediate Value Theorem

Whether or not an equation has a solution is an important question in mathematics.

Theorem 3.2.14 (Intermediate Value Theorem IVT) If f is continuous on the
interval [a, b] and N is between f (a) and f (b),where f (a) 6= f (b), then there is a

number c in (a, b) such that f (c) = N

The IVT guarantees that if .f is continuous and f (a) < N < f (b), the line y = N

intersects the function at some point x = c. Such a number c is between a and b and

has the property that f (c) = N (see Figure 23)

Figure 23 : Intermediate Value Theorem

(a) A continuous function where IVT holds for a single value c.

(b) A discontinuous function where IVT fails to hold.

(c) A continuous function where IVT holds for multiple values in (a, b) .

The Intermediate Value Theorem is most frequently used for N = 0.

Exercise 3.2.15 Show that there is a solution of 3
√
x+ x = 1 in the interval (0, 8).
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Solution 3.2.16 Let f (x) = 3
√
x + x − 1, a = 0, and b = 8, Since 3

√
x, x − 1 are

continuous on R, and the sum of continuous functions is again continuous, we have that

f is continuous on R, thus in particular, f is continuous on [0, 8]. We have f(a) =

f(0) = 3
√

0 + 0 − 1 = −1 and f(b) = f(8) = 3
√

8 + 8 − 1 = 9. Thus N = 0 lies between

f(a) = −1 and f(b) = 9, so the conditions of the IVT are satisfied. So, there exists a

number c in (0, 8) such that f(c) = 0. This means that c satisfies 3
√
c + c − 1 = 0, in

otherwords, is a solution for the equation given.

Alternatively we can let f (x) = 3
√
x+ x, N = 1, a = 0 and b = 8. Then as before f

is the sum of two continuous functions, so is also continuous everywhere, in particular,

continuous on the interval [0, 8], f(a) = f(0) = 3
√

0 + 0 = 0 and f(b) = f(8) = 3
√

8 + 8 =

10. Thus N = 1 lies between f(a) = 0 and f(b) = 10, so the conditions of the IVT are

satisfied. So, there exists a number c in (0, 8) such that f(c) = 1. This means that c

satisfies 3
√
c+ c = 1, in otherwords, is a solution for the equation given.

Proposition 3.2.17 Let f be a continuous function on interval [a, b], such that

f(a).f(b) < 0, there exists c ∈]a, b[ such that f(c) = 0.

3.2.5 Uniform Continuity

Recall the definition of continuityon an interval I : let x0 ∈ I we have

∀ε > 0,∃δ (ε, x0) > 0, ∀x ∈ I, |x− x0| < δ ⇒ |f(x)− f(x0)| < ε.

Here, δ (ε, x0) indicates that δ can depend on ε and x0.

Exercise 3.2.18 Consider the function f(x) =
1

x
. f is continuous on (0, 1).

Solution 3.2.19 We want to show that if |x− x0| < δ, then |1
x
− 1

x0
| < ε. Specifically,

we can choose δ = min

{
x0
2
,
x20
2
ε

}
.

In fact

|x− x0| <
x0
2
⇒ |x| > x0 − |x− x0| >

x0
2
.
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Thus,
1

|x| <
2

x0
.Therefore,

|1
x
− 1

x0
| =

|x− x0|
|xx0|

<
δ

|x||x0|

<
2δ

x20

<
2
x20
2
ε

x20
= ε.

Definition 3.2.20 (Uniformly Continuous) Let f : I → R. Then f is uniformly

continuous on I if

∀ε > 0,∃δ (ε) > 0, ∀x, y ∈ I, |x− y| < δ ⇒ |f(x)− f(y)| < ε.

Remark 3.2.21 Thus, in the definition of uniform continuity, δ only depends on ε!.

Example 3.2.22 The function f(x) = x2 is uniformly continuous on [0, 1].

Let ε > 0.Choose δ =
ε

2
. Then, if x, y ∈ [0, 1] then |x− y| < δ implies that

|x2 − y2| = |x− y||x+ y| ≤ 2|x− y| < 2δ = ε.

Remark 3.2.23 There are continuous functions that are not uniformly continuous.

Example 3.2.24 f (x) =
1

x
is not uniformly continuous on (0, 1), but first we consider

the negation of the definition.

Negation of uniform continuity : f is not uniformly continuous on I if

∃ε0 > 0, ∀δ > 0, ∃x, y ∈ I, |x− y| < δ ⇒ |f(x)− f(y)| > ε0.

Let δ > 0, choose ε0 = 2, y = min

{
δ,

1

2

}
and x =

y

2
. Then |x− y| = y

2
≤ δ

2
< δ and

|1
x
− 1

y
| = |2

y
− 1

y
| = 1

y
≥ 2

Theorem 3.2.25 Let f : [a, b]→ R. Then, f is continuous if and only if f is uniformly
continuous.

The following procedure is a practical method of showing that a function is uniformly

continuous.
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Definition 3.2.26 A function f definite of I ⊂ R in R is said to be k-Lipschitzian over
I if:

∃k ≥ 0,∀x, y ∈ I : |f(x)− f(y)| ≤ k|x− y|

Remark 3.2.27 A k-Lipschitzian function on I is uniformly continuous on I.

Indeed; for ε > 0, we just need to take δ =
ε

k
, such that

∀x, y ∈ I : |x− y| < δ ⇒ |f(x)− f(y)| ≤ k|x− y| < ε.

Definition 3.2.28 A function f is said to be contracting on I if f is k-Lipschitzian

with 0 ≤ k < 1.

Conclusion 3.2.29 A contracting function on I is uniformly continuous on I

Here is a theorem very used in practice to show that a function is bijective.

Theorem 3.2.30 Let f : I → R be a function defined on an interval I of R. If f is
continuous and strictly monotonic on I, so

1. f establishes a bijection of the interval I in the image interval J = f(I),

2. The inverse function f−1 : J → I is continuous and strictly monotonic on J and

it has the same direction of variation as f .

Figure 24 : inverse function
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3.3 Derivable function

3.3.1 Definition and properties

Definition 3.3.1 Let f be defined in a δ-neighbourhood (x0−δ, x0+δ) of x0 ∈ R (δ > 0).

We say that f is diff erentiable at x0 if the limit

lim
x→x0

f(x)− f(x0)

x− x0
exists in R. This limit, denoted by f ′ (x0), is called the derivative of f at x0 .

Furthermore, if f is differentiable at every x0 ∈ I (an interval), we write f ′ or
df

dx
for the function f ′.

Example 3.3.2 1) f (x) = c⇒ f ′ (x0) = lim
x→x0

c− c
x− x0

= 0⇒ f ′ (x) = 0, ∀x ∈ R.

2) f(x) = x2 ⇒ f ′ (x0) = lim
x→x0

x2 − x20
x− x0

= lim
x→x0

(x+ x0) = 2x0 ⇒ f ′ (x) = 2x.

3) f (x) =
√
x ⇒ f ′ (x0) = lim

x→x0

√
x−√x0
x− x0

= lim
x→x0

1√
x+
√
x0

=
1

2
√
x0
⇒ f ′ (x) =

1

2
√
x
.

Remark 3.3.3 By substituting x− x0 = h, we find:

lim
h→0

f(x0 + h)− f(x0)

h
exists and is finite⇔ ( f is derivative at x0)

Example 3.3.4 Let f : R→ R be defined by f(x) = x2 . The derivative of f at a point

x0 ∈ R is

f ′ (x0) = lim
h→0

f(x0 + h)− f(x0)

h
= lim

h→0

(x0 + h)2 − x20
h

= lim
h→0

h2 + 2hx0
h

= lim
h→0

(h+ 2x0) = 2x0

Theorem 3.3.5 If f : I → R is differentiable at x0 ∈ I, then f is continuous at x0.

Proof.
f ′ (x0) = lim

h→0

f(x0 + h)− f(x0)

h
.

Hence

lim
h→0

(f(x)− f(x0)) = lim
h→0

(f(x0 + h)− f(x0))

= lim
h→0

f(x0 + h)− f(x0)

h
h

= f ′ (x0) lim
h→0

h = 0.
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Therefore

lim
h→0

f(x) = f(x0)

Example 3.3.6 Let f : R→ R be defined by f(x) = |x|. Then f is differentiable at any
x ∈ R− {0}. But f is not differentiable at 0.

In fact, we have :

If x > 0, then

lim
h→0

f(x+ h)− f(x)

h
= 1.

If x < 0, then

lim
h→0

f(x+ h)− f(x)

h
= −1.

Therefore, the derivative does not exist at 0, as

lim
h→0+

f(x+ h)− f(x)

h
6= lim

h→0−
f(x+ h)− f(x)

h

Note that the function f in the above example is continuous at 0 : thus, continuity

does not imply differentiability. However, the converse is true.

Figure 25 : f and f ′ s.t f(x)=|x|

3.3.2 One-sided derivatives

1) In a manner similar to the definition of the one-sided limit, we may also define the

left and right derivatives of f at x0 via

f ′− (x0) = lim
h→0−

f(x+ h)− f(x)

h
, f ′+ (x0) = lim

h→0+
f(x+ h)− f(x)

h

2)

 f is derivative on the right and left at x0
and

f ′− (x0) = f ′+ (x0)

⇔
 f is derivative at x0
and

f ′ (x0) = f ′− (x0) = f ′+ (x0)


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3) If f ′− (x0) 6= f ′+ (x0), then f is not differentiable at x0 and we say that x0 is an

angular point.

Remark 3.3.7 If f is differentiable at x0 ∈ R then there exists a function ε(x) such

that lim
x→0

ε(x) = 0 and

f (x) = f (x0) + f ′ (x0) (x− x0) + ε(x) (x− x0)

Indeed, define

ε(x) :=
f(x)− f(x0)

x− x0
− f ′ (x0)

Then ε(x)→ 0 as x→ 0 and f (x) = f (x0) + f ′ (x0) (x− x0) + ε(x) (x− x0)

This enables one to re-interpret the formula in the above Remark as follows. If f is

differentiable at x0 ∈ R, then one can write for the value of f(x = x0+h), that is “near”

x0:

f (x0 + h) = f (x0) + f ′ (x0)h+ o (h)

where the notation o(h) reads as “little o of h”, and denotes any function which has the

following property: lim
h→0

o(h)

h
= 0.

3.3.3 Operations on derivative functions:

Theorem 3.3.8 Let f : I → R, g : I → R be differentiable at x0 ∈ I. Then,

1.(Linearity) ∀α ∈ R,(αf + g)′(x0) = αf ′(x0) + g′(x0).
2.(Product rule) (fg)′(x0) = f ′(x0)g(x0) + f(x0)g′(x0).

3.(Quotient rule) If g(x) 6= 0 for all x ∈ I, then
(
f

g

)′
(x0) =

f ′(x0)g(x0)− f(x0)g′(x0)
g2(x0)

.

Proof.
1.

lim
x→x0

(αf + g) (x)− (αf + g) (x0)

x− x0
= lim

x→x0

(
α
f(x)− f(x0)

x− x0
+
g(x)− g(x0)

x− x0

)
= αf ′ (x) + g′ (x) .

2. We first write

(fg) (x)− (fg) (x0)

x− x0
=
f(x)− f(x0)

x− x0
g (x) + f (x0)

g(x)− g(x0)

x− x0
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then

lim
x→x0

(fg) (x)− (fg) (x0)

x− x0
= lim

x→x0

[
f(x)− f(x0)

x− x0
g (x) + f (x0)

g(x)− g(x0)

x− x0

]
= f ′(x0)g (x0) + f (x0) g

′(x0)

3.The result follows from(
f

g

)
(x)−

(
f

g

)
(x0)

x− x0
=

f (x) g (x0)− g (x) f (x0)

g (x) g (x0) (x− x0)

=
f(x)− f(x0)

g (x) g (x0) (x− x0)
g (x0)−

g (x)− g(x0)

g (x) g (x0) (x− x0)
f(x0)

then

lim
x→x0

(
f

g

)
(x)−

(
f

g

)
(x0)

x− x0
= lim

x→x0

f (x) g (x0)− g (x) f (x0)

g (x) g (x0) (x− x0)

= lim
x→x0

(
f(x)− f(x0)

g (x) g (x0) (x− x0)
g (x0)−

g (x)− g(x0)

g (x) g (x0) (x− x0)
f(x0)

)
=

f ′(x0)g(x0)− f(x0)g′(x0)
g2(x0)

.

Theorem 3.3.9 If g is differentiable at x0 ∈ R and f is differentiable at g(x0), then

f ◦ g is differentiable at x0 and

(f ◦ g)′ (x0) = f ′ (g (x0)) g
′ (x0)

Proof. By definition of the derivative and Remark 4.3.7, we have

f (y)− f (y0) = f ′ (y0) (y − y0) + ε(y) (y − y0)

where ε(y) → 0 as y → y0. substitute y and y0 in the above equality by y = g (x)

and y0 = g (x0), then divide both sides by x− x0, to get

f (g (x))− f (g (x0))

x− x0
= f ′ (g (x0))

g (x)− g (x0)

x− x0
+ ε(g (x))

g (x)− g (x0)

x− x0
.

By Theorem 4.3.5, g is continuous at x0. Hence y = g (x)→ g (x0) = y0 as x→ x0,

and ε(g (x)) → 0 as x → x0.Passing to limit x → x0 in the above equality yields the

required result.
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Theorem 3.3.10 Let f be continuous and strictly increasing on (a, b). Suppose that,

for some x0 ∈ (a, b), f is differentiable at x0 and f ′(x0) 6= 0. Then the inverse function

g = f−1is differentiable at y0 = f(x0) and

g′ (y0) =
1

f ′ (x0)
(writes x0 as a function of y0)

Example 3.3.11 Define
f : R→ R

x 7→ x2
.

Then f ′ (0) = 0 and f is not invertible on any neighborhood of the origin, because it is

non-monotonic. On the other hand, if

f : ]0,+∞[→ ]0,+∞[

x 7→ x2
,

then f ′(x) = 2x 6= 0 and the inverse function f−1 : is given by

f−1 (y) =
√
y.

The formula for the inverse of the derivative gives(
f−1

)′ (
x2
)

=
1

f ′ (x)
=

1

2x

or, writing x = f−1 (y), (
f−1

)′
(y) =

1

2
√
y
.

Example 3.3.12 Define f : R→ R by f (x) = x3. Then f is strictly increasing. The

inverse function f−1 : R→ R is given by

f−1 (y) = y
1
3 .

Then f ′ (0) = 0 and f−1 is not differentiable at f (0) = 0, On the other hand, f−1is

differentiable at non-zero points of R, with(
f−1

)′ (
x3
)

=
1

f ′ (x)
=

1

3x2

or, writing x = y
1
3 , (

f−1
)′

(y) =
1

3y
2
3

.
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3.3.4 Derivative of usual functions

µ represents a function x→ µ(x).

function derivative

xn nxn−1 (n ∈ Z)
1

x
− 1

x2√
x

1

2

1√
x

xα αxα−1 (α ∈ R)
ex ex

lnx
1

x
cosx − sinx

sinx cosx

tanx 1 + tan2 x =
1

cos2 x

function derivative

µn nµ′µn−1, (n ∈ Z)

1

µ
− µ

′

µ2

√
µ

1

2

µ′
√
µ

µα αµ′µα−1, (α ∈ R)

eµ µ′eµ

lnµ
µ′

µ

cosµ −µ′ sinµ
sinµ µ′ cosµ

tanµ
(
1 + tan2 µ

)
µ′ =

µ′

cos2 µ

3.3.5 The nth derivative

Definition 3.3.13 Let f : I → R be a differentiable function and let f ′ be its derivative.
If the function f ′ : I → R is also differentiable, we denote f ′′ = (f ′)′ the second derivative

of f . More generally we note:

f (0) = f , f (1) = f ′, f (2) = f ′′ and f (n+1) =
(
f (n)

)′
If the nth derivative f (n) exists, we say that f is n times differentiable.

- If f is n times differentiable on I and f (n) is continuous on I, we say that f belongs
to class Cn, and we write f ∈ Cn(I,R).

- If f is differentiable an infinite number of times, i.e., ∀n ∈ N, f (n) exists and is
continuous, we say that f belongs to class C∞, and we write f ∈ C∞ (I,R)

- If f is continuous but not differentiable, we say that f belongs to class C0, and we
write f ∈ C0(I,R).

Example 3.3.14 Polynomial functions, cosx, sinx, ex are functions belonging to class

C∞ on R.

Example 3.3.15 Computing the nth derivative of the function f (x) = lnx
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f (x) = lnx⇒ f ′ (x) =
1

x
, f ′′ (x) =

(−1) .1

x2
, f (3) (x) =

(−1)2 .1.2

x3

and from this

f (n) (x) =
(−1)n−1 . (n− 1)!

xn
. ∀n ≥ 1.

And the proof by induction.

Example 3.3.16 Using the same method, prove that.

sin(n) x = sin
(
x+ n

π

2

)
cos(n) x = cos

(
x+ n

π

2

)
For sin(n) x: we have

sinx(1) = cosx = sin
(
x+

π

2

)
sin(2) x = sin

(
x+

π

2

)′
= cos

(
x+

π

2

)
= sin

(
x+ 2

π

2

)
sin(3) x = sin

(
x+ 2

π

2

)′
= cos

(
x+ 2

π

2

)
= sin

(
x+ 3

π

2

)
...............................

sin(n) x = sin
(
x+ n

π

2

)
In the same way we demonstrate the second.

Leibniz’s rule:

Let f and g be two functions belonging to class Cn(I,R). Then f.g is also a function in

class Cn(I,R), and we have:

(f.g)(n) =

n∑
k=0

Cknf
(k)g(n−k),

where Ckn =
n!

(n− k)!k!
.

Proof of Leibniz Rule

The Leibniz rule can be proved with the help of mathematical induction. Let f(x)

and g(x) be n times differentiable functions. Applying the initial case of mathematical

induction for n = 1 we have the following expression.

(f(x).g(x))′ = f ′(x).g(x) + f(x).g′(x)
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Which is the simple product rule and it holds true for n = 1. Let us assume that this

statement is true for all n > 1, and we have the below expression.

(f.g)(n) =

n∑
k=0

Cknf
(k)g(n−k) = f (0)g(n) + ...+ Cknf

(k)g(n−k) + ...+ f (n)g(0)

(f.g)(n+1) =
(

(f.g)(n)
)′

=
n∑
k=0

Ckn

(
f (k)g(n−k)

)′
=

n∑
k=0

Ckn

(
f (k+1)g(n−k) + f (k)g(n+1−k)

)
=

n∑
k=0

Cknf
(k+1)g(n−k) +

n∑
k=0

Cknf
(k)g(n+1−k).

We change the variable in the first sum: p = k + 1

n∑
k=0

Cknf
(k+1)g(n−k) =

n+1∑
p=1

Cp−1n f (p)g(n+1−p).

Therefore:

(f.g)(n+1) =
n+1∑
k=1

Ck−1n f (k)g(n+1−k) +
n∑
k=0

Cknf
(k)g(n+1−k),

consequently

(f.g)(n+1) =

(
n∑
k=1

(
Ck−1n + Ckn

)
f (k)g(n+1−k)

)
+ Cnnf

(n+1)g(0) + C0nf
(0)g(n+1).

Note that Cnn = C0n = 1 and Ck−1n + Ckn = Ckn+1 then

(f.g)(n+1) =

(
n∑
k=1

Ckn+1f
(k)g(n+1−k)

)
+ f (n+1)g(0) + f (0)g(n+1).

Note that we can include the last two terms in the sum

C0n+1f
(0)g(n+1) = f (0)g(n+1) and

Cn+1n+1f
(n+1)g(n+1−n+1) = f (n+1)g(0),

then

(f.g)(n+1) =
n+1∑
k=0

Ckn+1f
(k)g(n+1−k).

So, according to the proof by induction

(∀n ∈ N) (∀x ∈ I) : (f.g)(n) (x) =
n∑
k=0

Cknf
(k) (x) g(n−k) (x) .
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Example 3.3.17 Calculate the nth derivative of the function:

f (x) =
(
x2 + x

)
lnx and g (x) = ex sinx.

1) f (x) =
(
x2 + x

)
lnx = f1 (x) .g1 (x) or f1 (x) = x2 + x and g1 (x) = lnx

f
(0)
1 (x) = x2+x⇒ f

(1)
1 (x) = 2x+ 1, f (2)1 (x) = 2, f (k)1 (x) = 0 for all k ≥ 3 (k ∈ N) ,

g
(n)
1 (x) =

(−1)n−1 . (n− 1)!

xn
,

f (n) (x) = (f1.g1)
(n) (x) =

n∑
k=0

Cknf
(k)
1 g

(n−k)
1 (x)

= C0nf
(0)
1 g

(n)
1 (x) + C1nf

(1)
1 g

(n−1)
1 (x) + C2nf

(2)
1 g

(n−2)
1 (x) + 0

=
(
x2 + x

) (−1)n−1 . (n− 1)!

xn
+ n (2x+ 1)

(−1)n−2 . (n− 2)!

xn−1
+
n (n− 1)

2
.2.

(−1)n−3 . (n− 3)!

xn−2
.

2) g (x) = ex sinx = f2 (x) .g2 (x) or f2 (x) = ex and g2 (x) = sinx.

f
(n)
2 (x) = ex and g(n)2 (x) = sin

(
x+ n

π

2

)
g(n) (x) = (f2.g2)

(n) (x) =
n∑
k=0

Cknf
(k)
2 g

(n−k)
2 (x)

=
n∑
k=0

Ckne
x sin

(
x+ (n− k)

π

2

)
.

Definition 3.3.18 ( Critical Points) Let c be an interior point in the domain of f .
We say that c is a critical point of f if f ′ (c) = O or f ′ (c) is undefined.

Theorem 3.3.19 (Fermat’s Theorem) If f has a local extremum at c and f is dif-

ferentiable at c, then f ′ (c) = 0.

Exercise 3.3.20 Find the local extremum (maximum and minimum) over the specified

interval

f (x) = −x2 + 3x− 2 over [1, 3].

Solution 3.3.21 Step 1. Evaluate f at the endpoints x = 1 and x = 3.

f (1) = 0 and f(3) = −2.

Step 2. Since f ′ (x) = −2x+ 3 = 0 at x =
3

2
and

3

2
is in the interval [1, 3], f

(
3

2

)
=

1

4
is a candidate for a local extremum of f over [1, 3].
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Step 3. We compare the values found in steps 1 and 2.We find that the local ex-
tremum minimum of f is −2, and it occurs at x = 3. The local extremum maximum of

f is
1

4
, and it occurs at x =

3

2
as shown in Figure

Figure 26 : This function has both local extremum maximum and minimum.

Method of finding points where the function f possesses extreme values:

Theorem 3.3.22 Let f ∈ F (D,R) be differentiable on D, assuming that f ′′ exists,let

x0 ∈ D then: {
f ′ (x0) = 0

f ′′ (x0) > 0
=⇒ x0 is a local minimum point of f{

f ′ (x0) = 0

f ′′ (x0) < 0
=⇒ x0 is a local minimum point of f

Example 3.3.23 Let the function f (x) = cosx and x0 = 0, x1 = π.

f ′ (x) = − sinx⇒
{

f ′ (0) = 0

f ′ (π) = 0
⇒ x0 and x1 are critical points.

f ′′ (x) = − cosx⇒
{
f ′′ (0) = −1 < 0→ x0 = 0 is a local maximum point of f.

f ′′ (π) = 1 > 0 → x1 = π is a local minimum point of f.
.

The general case: Let f ∈ C(n) (D,R), where:

f ′(x0) = f ′′(x0) = ... = f (n−1)(x0) = 0, f (n)(x0) 6= 0

Case1: If n is even

f (n)(x0) > 0 ⇒ x0 is a local minimum point of f.

f (n)(x0) < 0 ⇒ x0 is a local maximum point of f
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Case2: If n is odd

f (n)(x0) 6= 0⇒ x0 is not extreme point but rather an inflection point.

Example 3.3.24 x0 = 0 and f (x) = x3

f ′ (x) = 3x2 ⇒ f ′ (0) = 0→ f has a critical point at x0 = 0

f ′′ (x) = 6x⇒ f ′′ (0) = 0

f ′′′ (x) = 6⇒ f ′′′ (0) 6= 0

With n = 3 being an odd number and f ′′′ (x) 6= 0, hence x0 = 0 is an inflection point,

and f does not possess an extreme value at x0 = 0.

Example 3.3.25 Let the function f : R→ R where f (x) = 6 lnx− 2x3 + 9x2 − 18x.

Does f have an extreme value at x0 = 0?

f ′ (x) =
6

x
− 6x2 + 18x− 18⇒ f ′ (1) = 0

f ′′ (x) = − 6

x2
− 12x+ 18⇒ f ′′ (1) = 0

f ′′′ (x) =
12

x3
− 12⇒ f ′′′ (1) = 0

f (4) (x) = −36

x4
⇒ f (4) (1) 6= 0.

Since n = 4 is even number and f (4) (1) < 0, then x0 = 1is a local maximum point

of f and f (1) = −11 is the local maximum value of f .

Theorem 3.3.26 (Rolle’s Theorem) Let f : [a, b]→ R be a continuous function over
the closed interval [a, b] and differentiable over the open interval ]a, b[ such that

f(a) = f(b),

then there exists at least one c ∈]a, b[ such that f ′c) = 0.

Proof. - If f is constant over [a, b] then it is obvious (f ′ = 0).

-Otherwise; since f is continuous on [a, b] then it is bounded on [a, b], so

sup f(x)
x∈]a,b[

= M,

exists, then we have

∀x ∈]a, b[: f(x) ≤M,
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we can assume that M is different from f(a) = f(b) and therefore there exists c in ]a, b[

such that M = f(c), therefore

∀x ∈]a, b[: f(x) ≤ f(c),

then c is a local maximum of f so according to Fermat’s theorem f ′(c) = 0.

Figure 27 :

- If a differentiable function f satisfies f (a) = f (b) , then its derivative must be zero at some point (s)

between a and b

- This means that the curve at the point (c, f (c)) accepts a tangent parallel to the x-axis.

Example 3.3.27 Can Rolle’s Theorem be applied to the function f (x) = x2 + 1 in the

interval [−1, 1]?

We have f is continuous in the interval [−1, 1], differentiable on ]−1, 1[, and f(1) =

f(−1). Therefore, Rolle’s Theorem can be applied.

Example 3.3.28 Can Rolle’s Theorem be applied to the function f (x) = (|x| − 1)2 on

[−1, 1] .

We have f is continuous over [−1, 1] and f(1) = f(−1) = 0, but f ′ (c) 6= 0 for any

c ∈ ]−1, 1[because f is not differentiable at x = 0, the conditions of Rolle’s theorem are

not satisfied. In fact, the conclusion does not hold here; there is no c ∈ ]−1, 1[ , such

that f ′ (c) 6= 0.

Figure 28 : No c such tha f ′(c)=0
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Example 3.3.29 For f (x) = x3 + 1, it is continuous and differentiable on [−1, 1].

We have f ′ (x) = 3x2. And thus ∃c ∈ ]−1, 1[ : f ′ (c) = 0.

However, this does not imply that f (a) = f (b). f (−1) = 0 6= f (1) = 2.

Theorem 3.3.30 (Finite Increment Theorem or Mean Value Theorem) Let f be
continuous over the closed interval [a, b] and differentiable over the open interval ]a, b[.

Then, there exists at least one point c ∈ ]a, b[ such that

f ′ (c) =
f (b)− f (a)

b− a .

Proof. Set
g(x) := f(x)−

[
f(b)− f(a)

b− a

]
(x− a) .

Then g is continuous on [a, b] and differentiable on ]a, b[, and

g′(x) := f ′(x)−
[
f(b)− f(a)

b− a

]
.

Moreover,g(a) = f(a), and

g(b) = f(b)−
[
f(b)− f(a)

b− a

]
(b− a) = f(a).

Therefore, by Rolle’s theorem,(
∃c ∈ ]a, b[ , g′ (c) = 0

)
⇔
(
∃c ∈ ]a, b[ , f ′ (c) =

f(b)− f(a)

b− a

)
.

Corollary 3.3.31 If f is defined on an interval and f ′(x) = 0 for all x in the interval,

then f is constant there.

Proof. Let a and b be any two points in the interval with a 6= b. Then, by the Mean

Value Theorem, there is a point x in ]a, b[ such that

f ′(x) =
f(b)− f(a)

b− a .

But f ′(x) = 0 for all x in the interval, so

0 =
f(b)− f(a)

b− a ,

and consequently, f(b) = f(a). Thus the value of f at any two points is the same and f

is constant on the interval.
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Corollary 3.3.32 If f and g are defined on the same interval and f ′(x) = g′(x), then

f = g + c for some number c ∈ R.

The proof is left as an exercise.

Corollary 3.3.33 If f ′(x) > 0 (resp. f ′(x) < 0) for all x in some interval, then f is

increasing (resp. decreasing) on this interval.

Proof. Consider the case f ′(x) > 0. Let a and b be any two points in the interval,

with a < b. By the Mean Value Theorem, there is a point x in ]a, b[ such that

f ′(x) =
f(b)− f(a)

b− a .

But f ′(x) > 0 for all x in the interval, so that

f(b)− f(a)

b− a > 0.

Since b − a > 0, it follows that f(b) > f(a), which proves that f is increasing on the

interval.

The case f ′(x) < 0 is left as an exercise.

Example 3.3.34 Using the Finite Increments Theorem on the function f (x) = sinx ,

we prove that

∀x > 0 : | sinx| ≤ |x|.

Solution 3.3.35 The function f is continuous on R and differentiable on R, so it is
continuous on [0, x] and differentiable on ]0, x[, according to the Finite Increments The-

orem:

(∃c ∈ ]0, x[) : (f(x)− f(0)) = (x− 0)f ′ (c)

So:
sinx = x cos c⇒ |sinx| = |x| |cos c|

⇒ |sinx| ≤ |x| ( |cosx| ≤ 1, ∀x ∈ R)

Hence:

∀x > 0 : |sinx| ≤ |x| .

Example 3.3.36 Prove that ∀x > 0 :
x

x+ 1
< ln (1 + x) < x.
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Solution 3.3.37 We set :f (t) = ln (1 + t) ⇒ f ′ (t) =
1

t+ 1
is continuous and differen-

tiable on]−1,+∞[. Thus, f is continuous on [0, x] and differentiable on ]0, x[. According

to the Finite Increments Theorem:

(∃c ∈ ]0, x[) : (f(x)− f(0)) = (x− 0)f ′ (c)

So,

ln(1 + x) = x.
1

c+ 1

And we have :

0 < c < x⇒ 1 < 1 + c < 1 + x

Which implies:

for x > 0,
x

1 + x
<

x

1 + c
< x,

and ln (1 + x) =
x

1 + c
.

Therefore,

for x > 0,
x

1 + x
< ln (1 + x) < x

The next theorem is a generalization of the mean value theorem. It is of interest

because of its use in applications.

Theorem 3.3.38 (Cauchy Mean Value Theorem) If f and g are continuous on

[a, b] and differentiable on ]a, b[, then

∃c ∈ ]a, b[ , [f(b)− f(a)] g′ (c) = [g (b)− g (a)] f ′(c).

If g(b) 6= g(a), and g′(c) 6= 0, the above equality can be rewritten as

f(b)− f(a)

g (b)− g (a)
=
f ′(c)

g′ (c)
.

Note that if g(x) = x, we obtain the Mean Value Theorem.

Proof. Let h : [a, b]→ R be defined by

h(x) = [f(b)− f(a)] g (x)− [g (b)− g (a)] f (x) .

Then

h (a) = f(b)g (a)− f(a)g (b) = h (b) ,

so that h satisfies Rolle’s theorem. Therefore,

∃c ∈ ]a, b[ , h′(c) = 0⇔ [f(b)− f(a)] g′ (c)− [g (b)− g (a)] f ′ (c) = 0.
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3.3.6 Hôspital’s Rule:

Eliminate cases of indeterminacy in the form (∞−∞) (0×∞)

It is used to remove cases of indeterminacy in the form
0

0
or
∞
∞ .

Theorem 3.3.39 Let f and g be differentiable functions near x0 in domain D:
Where

lim
x→x0

f (x)

g (x)
=

0

0
or lim

x→x0

f (x)

g (x)
=
∞
∞ .

Therefore,

lim
x→x0

f ′ (x)

g′ (x)
= l⇒ lim

x→x0

f (x)

g (x)
= l.

(supposing l is a defined limit, it could be ∞).

Proof. By the Cauchy Mean ValueTheorem,

f(a+ h)− f(a)

g (a+ h)− g (a)
=
f ′(a+ th)

g′ (a+ th)

for some 0 < t < 1. Now pass to the limit h→ 0 to get the result.

Example 3.3.40 1- lim
x→0

ex − 1

sinx
=

(
0

0

)
H→ lim

x→0

ex

cosx
= 1⇒ lim

x→0

ex − 1

sinx
= 1.

2- lim
x→∞

lnx

ex
=
(∞
∞

)
H→ lim

x→∞

1

x
ex

= lim
x→∞

1

xex
= 0 ⇒ lim

x→∞
lnx

ex
= 0.

Remark 3.3.41 The converse of Hôpital’s Rule is not true. It is possible for lim
x→x0

f (x)

g (x)

to exist while lim
x→x0

f ′ (x)

g′ (x)
does not exist (where either f or g is not differentiable at x0).

Example 3.3.42

lim
x→x0

f (x)

g (x)
= lim

x→0

x2 sin
1

x
sinx

= lim
x→0

x sin
1

x(
sinx

x

) =
0

1
= 0

lim
x→x0

f ′ (x)

g′ (x)
= lim

x→0

2x sin
1

x
−

cos
1

x
x2

(
x2
)

cosx

= lim
x→0

[
2x sin

1

x
− cos

1

x

]
cosx

( lim
x→0

cos
1

x
does not exist)
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So lim
x→x0

f ′ (x)

g′ (x)
doesn’t exist

Eliminate cases of indeterminacy in the form (∞−∞) or (0×∞)

To eliminate the indeterminacy cases (0×∞), we apply Hospital’s rule, we write it in

the form
0

0
or
∞
∞ .

* (0×∞) = lim
x→x0

f (x) g (x) = lim
x→x0

f (x)
1

g (x)

=
0
1

∞

=
0

0
→ H.

* (∞× 0) = lim
x→x0

f (x) g (x) = lim
x→x0

f (x)
1

g (x)

=
∞
1

0

=
∞
∞ → H.

To remove cases of indeterminacy in the form ∞−∞ we use:

* (∞−∞) = lim
x→x0

(f (x)− g (x)) = lim
x→x0

f (x)

[
1− f (x)

g (x)

]
.

Applying Hôpital’s Rule to
f (x)

g (x)
, which is of the form

∞
∞ , we have two cases :

a) lim
x→x0

f (x)

g (x)
6= 1. Hence, lim

x→x0
f (x)

[
1− f (x)

g (x)

]
=∞.

b) lim
x→x0

f (x)

g (x)
= 1.It becomes the indeterminacy of the form ∞× 0.

lim
x→x0

(f (x)− g (x)) = lim
x→x0

1− g (x)

f (x)
1

f (x)

=
1− 1

1

∞

=
0

0
.

Or

lim
x→x0

f (x)

1
1

1− g (x)

f (x)

=
∞
1

1− 1

∞
∞ → H.

Example 3.3.43 a) lim
x→+∞

e−x lnx = (0×∞) .

lim
x→+∞

lnx

ex
H→ lim

x→+∞

lim
x→+∞

1

x
ex

= lim
x→+∞

1

xex
= 0.
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b) lim
x→0+

lnx+
1

x
= (−∞+∞) .

lim
x→0+

lnx+
1

x
= lim

x→0+
lnx

1 +

1

x
lnx

 .

lim
x→0+

1

x
lnx

=
+∞
−∞

H→ lim
x→0+

− 1

x2
1

x

= lim
x→0+

− 1

x
= −∞.

Therefore lim
x→0+

lnx+
1

x
= lim

x→0+
lnx

1 +

1

x
lnx

 = (−∞) (−∞) = +∞.

3.4 Elementary functions

We now use power series to strictly define the Exponential, Logarithmic, and Trigono-

metric functions and describe their properties.

3.4.1 Trigonometric functions

Arcsine Function

f :
[
−π

2
,
π

2

]
→ [−1, 1]

x → f(x) = sinx

f is continuous, strictly increasing over
[
−π

2
,
π

2

]
, then f is bijective and therefore

f−1 exists, is continuous and strictly increasing, and we have f
([
−π

2
,
π

2

])
= [−1, 1]

and
f−1 : [−1, 1] →

[
−π

2
,
π

2

]
y → f−1(y) = arcsin y

from where we have (
arcsin y = x

−1 ≤ y ≤ 1

)
⇔
(

sinx = y

−π
2
≤ x ≤ −π

2

)
.

Forthermore, the arcsine function is:

- Differentiable on ]−1,+1[ and

∀y ∈ ]−1, 1[ , (arcsin y)′ =
1√

1− y2
,
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in fact
y ∈ ]−1, 1[ : arcsin y = x⇔ y = sinx and

(arcsin y)′ =
1

(sinx)′
=

1

cosx

.

But we have

cos2 x+ sin2 x = 1 ⇔ cosx = ±
√

1− sin2 x

⇔ cosx =
√

1− sin2 (arcsin y)

⇔ cosx =
√

1− y2.
( cosx > 0, on

]
−π

2
,
π

2

[
)

So

(arcsin y)′ =
1√

1− y2
,∀y ∈ ]−1, 1[ .

See figure 29

Figure 29 : sin and arcsin

Note

sin (arcsin y) = y ∀y ∈ [−1, 1] .

arcsin (sinx) = x ∀x ∈
[
−π

2
,
π

2

]
.

In other words

sinx = y ⇔ x = arcsin y if x ∈
[
−π

2
,
π

2

]
.

Arccosine Function

f : [0, π] → [−1, 1]

x → f(x) = cosx
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f is continuous, strictly decreasing over [0, π], then f is bijective and therefore f−1

exists, is continuous and strictly decreasing , and we have f ([0, π]) = [−1, 1] and

f−1 : [−1, 1] → [0, π]

y → f−1(y) = arccos y

from where we have (
arccos y = x

−1 ≤ y ≤ 1

)
⇔
(

cosx = y

0 ≤ x ≤ π

)
.

Forthermore, the arcose function is :

- Differentiable on ]−1,+1[ and

∀y ∈ ]−1, 1[ , arccos′ y =
−1√
1− y2

in fact

∀y ∈ ]−1, 1[ : arccos y = x⇔ y = cosx

and
(arccos y)′ =

1

(cosx)′

=
−1

sinx
( sinx > 0, on ]0, π[ )

=
−1√

1− cos2 x
=

−1√
1− y2

.

See figure 30

Figure 30 : cos and arccos
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Note

cos (arccos y) = y ∀y ∈ [−1, 1]

arccos (cosx) = x ∀x ∈ [0, π]

Arctangent function

f :
]
−π

2
,
π

2

[
→ ]−∞,+∞[

x → f(x) = tanx =
sinx

cosx

f is continuous, strictly increasing on
]
−π

2
,
π

2

[
, then f is bijective and therefore f−1

exists, is continuous and strictly increasing and we have f
(]
−π

2
,
π

2

[)
= ]−∞,+∞[ and

f−1 : ]−∞,+∞[ →
]
−π

2
,
π

2

[
y → f−1(y) = arctan y

from which we have (
arctan y = x

y ∈ R

)
⇔
(

tanx = y

−π
2
< x <

π

2

)
.

Forthermore, the arctangente function is:

- Differentiable on R and

∀y ∈ R, (arctan)′ y =
1

1 + y2
,

in fact

∀y ∈ R : arctan y = x⇔ y = tanx

and
(arctan y)′ =

1

(tanx)′

=
1

1 + tan2 x
1

1 + y2
.
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See figure

Figure 31 : tan and arctan

Example 3.4.1 1)

arctan 0 = α : α ∈
]
−π

2
,
π

2

[
⇒ tan (arctan 0) = tanα

⇒ 0 = tanα : α ∈
]
−π

2
,
π

2

[
⇒ α = 0.

2)

lim
y→−∞

arctan y = −π
2
and lim

y→∞
arctan y =

π

2
.

Arccotangent function

f : ]0, π[ → ]−∞,+∞[

x → f (x) = cotx =
cosx

sinx

f is continuous, strictly decreasing on ]0, π[, then f is bijective and therefore f−1 exists,

is continuous and strictly decreasing and we have f (]0, π[) = ]−∞,+∞[ and

f−1 : ]−∞,+∞[ → ]0, π[

y → f−1(y) = arccot y

from which we have (
arccot y = x

y ∈ R

)
⇔
(

cotx = y

0 < x < π

)
.
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Forthermore, the arccotangent function is:

- Differentiable on R and

∀y ∈ R, (arccot)′ y =
1

1 + y2
,

in fact

∀y ∈ R : arccot y = x⇔ y = cotx

and
(arccot y)′ =

1

(cotx)′

=
1

−1− cot2 x
−1

1 + y2
.

- Class C∞ on R.
See figure 32

Figure 32 : cot and arccot

1- Show that: 2 arctanx = arccos
1− x2
1 + x2

2- Deduce a simplified expression of cos (4 arctanx) .

3- Solve the equation

arctanx+ arctan 4x =
π

4
− arctan

1

5

1- let’s as
α = arctanx⇔ x = tanx, α ∈

]
−π

2
,
π

2

[
and determine

cos (2 arctanx) = cos 2α = 2 cos2 α− 1,
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hence

cos2 α =
1

1 + tan2 x
=

1

1 + x2
,

where from

cos 2α =
2

1 + x2
− 1 =

1− x2
1 + x2

and

2α = arccos
1− x2
1 + x2

= 2 arctanx.

2- Relationship

cos 4α = 2 cos2 2α− 1

= 2 cos2
(

arccos
1− x2
1 + x2

)
− 1

= 2

(
1− x2
1 + x2

)2
− 1

=
2
(
1− x2

)2 − (1 + x2
)2

(1 + x2)2

=
x4 − 6x2 + 1

(1 + x2)2
.

cos (4 arctanx) =
x4 − 6x2 + 1

(1 + x2)2
.

arctanx+ arctan 4x =
π

4
− arctan

1

5
.

3- Like (
π

4
− arctan

1

5

)
∈
[
0;
π

4

]
,

the values of x sought will be such that

0 ≤ arctanx+ arctan 4x ≤ π

4
.

So by a formal calculation, let’s take the tangent of the two sides

tan (arctanx+ arctan 4x)
tan (arctanx) + tan (arctan 4x)

1− tan (arctanx) tan (arctan 4x)

=
x+ 4x

1− 4x2
=

5x

1− 4x2
,
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tan

(
π

4
− arctan

1

5

)
=

tan
(π

4

)
− tan

(
arctan

1

5

)
1 + tan

(π
4

)
tan

(
arctan

1

5

)

=
1− 1

5

1 +
1

5

=
2

3
.

Solution 3.4.2 Where from

5x

1− 4x2
=

2

3
⇔ 2− 8x2 = 15x⇔ 8x2 + 15x− 2 = 0.

The equation which admits for roots: ∆ = (15)2 − 4× (−2)× 8 = (17)2 .

x =
−15± 17

16
=


x1 =

1

8
and

x2 = −2, rejected.

Only the solution x1 =
1

8
checks for double inequality 0 ≤ arctanx+ arctan 4x ≤ π

4
.

3.4.2 Exponential function

Definition 3.4.3 The exponential function denoted exp is the only differentiable func-

tion on R, equal to its derivative and verifying: exp(0) = 1.

Properties

1. ∀x ∈ R : exp (x) > 0.

2. ∀x, y ∈ R : exp (x+ y) = exp (x) exp (y) .

3. Euler’s notation: We set exp (x) = ex; where e1 = e ' 2.718, whence ∀x, y ∈
R : ex+y = exey, e−x =

1

ex
, ex−y =

ex

ey
, (ex)n = enx.

4. The exp function is strictly increasing on R.

5. ∀x, y ∈ R :

{
ex = ey ⇔ x = y.

ex < ey ⇔ x < y.

6. The function x→ ex is a bijection of R in R∗+.

Some reference limits:
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1. lim
x→−∞

ex = 0, lim
x→∞

ex = +∞, lim
x→0

ex − 1

x
= 1,

2. lim
x→0

ex

xn
= +∞, lim

x→−∞
xnex = 0, for all n ∈ N.

3.4.3 Logarithm function

We call the natural logarithm function denoted ln, the reciprocal function of the expo-

nential function, defined from ]0,+∞[ on R such as

∀x > 0 : x = ey ⇔ y = lnx.

Note: The graphs of the natural logarithm function and the exponential function are

symmetric with respect to the first bisector, i.e. the line of equation y = x, see figure

Figure 33 : ex and lnx

Properties

1. ln 1 = 0, ln e = 1.

2. ∀x ∈ R : ln ex = x and ∀x ∈ ]0,+∞[ : elnx = x.

3. The function ln is strictly increasing on ]0,+∞[.

4. ∀x, y ∈ ]0,+∞[ : lnx = ln y ⇔ x = y.

5. ∀x, y ∈ ]0,+∞[ : ln (xy) = lnx+ ln y.

6. ∀x, y ∈ ]0,+∞[ : ln
1

x
= − lnx; ln

y

x
= ln y − lnx.
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7. ∀x ∈ ]0,+∞[ ,∀n ∈ N : lnxn = n lnx.

Some reference limits:

1. lim
x→0+

lnx = −∞, lim
x→+∞

lnx = +∞, lim
x→0

ln (x+ 1)

x
= 1,

2. lim
x→+∞

lnx

xn
= 0, lim

x→−∞
xn lnx = 0, for all n ∈ N.

3.4.4 Logarithm function of any base

Definition 3.4.4 Let a be a strictly positive real number different from 1, we call a

logarithm function with base a; the real function denoted loga and defined on ]0,+∞[ by

f (x) = loga (x) =
ln (x)

ln a
,

where ln is the natural logarithm.

For a = e, we find the special case of the natural logarithm function ln, because

ln e = 1.

If a = 10, then the base 10 logarithm function is called the decimal logarithm function,

denoted log where ln 10 ' 2, 302, it is used in chemistry.

We also have another logarithm often used in computer science, it is the logarithm

in base 2 where log2 x =
lnx

ln 2
.

Properties Let a and b be two strictly positive real numbers different from 1, we

have:

1. loga 1 = 0, loga a = 1, log 1
a

= − loga .

2. loga x =
ln b

ln a
logb x, ∀x > 0.

In particular for a = e and b = 10, we have lnx = ln 10 log x.

3. ∀x, y ∈ ]0,+∞[ : loga x = loga y ⇔ x = y.

4. ∀x, y ∈ ]0,+∞[ : loga (xy) = loga x+ loga y.

5. ∀x, y ∈ ]0,+∞[ : loga

(
1

y

)
= − loga y, loga

(
x

y

)
= loga x− loga y.

6. ∀x ∈ ]0,+∞[ , ∀n ∈ N : loga (xn) = n loga x.

7. The loga function is strictly increasing on ]0,+∞[ for a > 1 and strictly decreasing

on ]0,+∞[ for 0 < a < 1.
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3.4.5 Power function

Definition 3.4.5 Let a be a strictly positive real and different from 1 and x any real, the

function a to the power of x or the basic exponential function a is the function denoted

ax and defined by

ax = ex ln a.

It is the reciprocal function of the loga function (base logarithm a).

Properties Let a and b be two strictly positive real numbers, and let x and y be
two arbitrary real numbers.

1. ax > 0, ln ax = x ln a.

2. 1x = 1, ax+y = axay, a−x =
1

ax
, ay−x =

ay

ax
.

3. (ab)x = axbx, (ax)y = axy.

4. The base exponential function a is strictly increasing on R for a > 1 and strictly

decreasing on R for 0 < a < 1.

3.4.6 Hyperbolic functions and their inverses

Hyperbolic sine and cosine

Definition 3.4.6 The functions hyperbolic sine denoted sinh or sh and hyperbolic cosine

denoted cosh or ch are defined on R by

ch : R→ [1,+∞[ ,

x→ ex + e−x

2

sh : R→ R

x→ ex − e−x
2

Remark 3.4.7 Any function f : I ⊂ R− → R decomposes uniquely into the sum of an

even function and of an odd function

∀x ∈ I, f (x) =
f (x) + f (−x)

2
+
f (x)− f (−x)

2
.

Indeed,
f (x) + f (−x)

2
is even and

f (x)− f (−x)

2
is odd. The hyperbolic cosine and

hyperbolic sine functions are respectively the even part and the odd part of the exponential

function in this decomposition.
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Proposition 3.4.8 The functions ch and sh are differentiable on R, for all x ∈ R

ch′(x) = sh(x), sh′(x) = ch(x).

Figure 34 : cosh and sinh

Hyperbolic tangent

Definition 3.4.9 The function hyperbolic tangent denoted tanh or th is defined on R
by

th : R → R

x → thx =
shx

chx

Figure 35 : tanh

Proposition 3.4.10 The function th is odd, differentiable on R, and for all x ∈ R

th′x = 1− th2x =
1

ch2x
.

Consequently, th is strictly increasing on R .
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Hyperbolic cotangent

Definition 3.4.11 The function hyperbolic cotangent denoted coth or coth is defined

on R∗by
coth : R∗ → ]−∞,−1[ ∪ ]1,+∞[

x → cothx =
chx

shx
=

1

thx
=
ex + e−x

ex − e−x

Proposition 3.4.12 The function coth is odd, differentiable on R∗, and for all x ∈ R∗

coth′ x = 1− coth2 x =
−1

sh2x
.

Figure 36 : coth

Proposition 3.4.13 For all x ∈ R
1. chx+ shx = ex 5. ch(x− y) = chxchy − shxshy
2. chx− shx = e−x 6. sh(x+ y) = shxchy + chxshy

3. ch2x− sh2x = 1 7. sh(x− y) = shxchy − chxshy

4. ch(x+ y) = chxchy + shxshy 8. th(x+ y) =
th(x) + th(y)

1 + th(x)th(y)

9. th(x− y) =
th(x)− th(y)

1− th(x)th(y)

Hyperbolic sine argument function

Proposition 3.4.14 The application (sinh) sh : R → R is continuous and strictly

increasing so admits a reciprocal function denoted arg sinh or arg sh : R→ R,
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hence we have (
arg shy = x

y ∈ R

)
⇔
(
shx = y

x ∈ R

)
.

Forthermore, the arg sinh function is:

- Differentiable on R and

(arg sh)′ y =
1√
y2 + 1

,

in fact

arg shy = x⇔ y = shx

and
(arg sh)′ y =

1

(shx)′

=
1

ch (x)

=
1√

sh2 (x) + 1

=
1√
y2 + 1

.

See Figure 37

Figure 37 : sh and arg sh

Remark 3.4.15 Logarithmic expression of arg shy

∀y ∈ R : arg shy = ln
(
y +

√
y2 + 1

)
.
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Indeed

∀ (y, x) ∈ R2, x = arg shy ⇔ y = shx and chx = +
√
sh2x+ 1 =

√
y2 + 1

and as
ex = shx+ chx = y +

√
y2 + 1

x = ln
(
y +

√
y2 + 1

)
.

Hyperbolic cosine argument function

Proposition 3.4.16 The application (cosh) ch : [0,+∞[ → [1,+∞[ is continuous and

strictly increasing so admits a reciprocal function denoted arg cosh or arg ch : [1,+∞[→
[0,+∞[ ,

hence we have (
arg chy = x

y ≥ 1

)
⇔
(
chx = y

x ≥ 0

)
.

Forthermore, the arg cosh function is:

- Differentiable on ]1,+∞[ and

(arg ch)′ y =
1√
y2 − 1

in fact

arg chy = x⇔ y = chx

and
(arg ch)′ y =

1

(chx)′

=
1

sh (x)

=
1√

ch2 (x)− 1

=
1√
y2 − 1

,
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for y ∈ ]1,+∞[ . See Figure 37

Figure 37 : ch and arg ch

Remark 3.4.17 Logarithmic expression of arg chy

∀y ∈ [1,+∞[ : arg chy = ln
(
y +

√
y2 − 1

)
.

Indeed

∀ (y, x) ∈ [1,+∞[×[0,+∞[ , x = arg chy ⇔ y = chx and shx = +
√
ch2x− 1 =

√
y2 − 1

and as

ex = chx+ shx = y +
√
y2 − 1

x = ln
(
y +

√
y2 − 1

)
.

Hyperbolic tangent argument function

Proposition 3.4.18 The application (tanh) th : R→ ]−1, 1[ is continuous and strictly

increasing so admits a reciprocal function noted arg tanh or arg th : ]−1, 1[→ R.

hence have (
arg thy = x

y ∈ ]1, 1[

)
⇔
(
thx = y

x ∈ R

)
.

Forthermore, the arg tanh function is :
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- Differentiable on ]1, 1[ and

(arg th)′ y =
1

1− y2 ,

in fact

arg thy = x⇔ y = thx

and
(arg th)′ y =

1

(thx)′

=
1

1− th2x
=

1

1− y2 .

See Figure 38

Figure 38 : th and arg th

Remark 3.4.19 Logarithmic expression of arg thy

∀y ∈ ]−1, 1[ : arg thy =
1

2
ln

1 + y

1− y .

Indeed
∀ (y, x) ∈ ]−1, 1[× R, x = arg thy ⇔ y = thx

⇔ y =
ex + e−x

ex − e−x =
e2x − 1

e2x + 1
⇒ y

(
e2x + 1

)
= e2x − 1

⇒ e2x =
1 + y

1− y
⇒ x =

1

2
ln

1 + y

1− y .
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Hyperbolic cotangent argument function

Proposition 3.4.20 The application coth : R∗ → ]−∞,−1[∪ ]1,+∞[ is continuous and

strictly decreasing so admits a reciprocal function noted arg coth or arg cth : ]−∞,−1[∪
]1,+∞[→ R∗,

hence we have (
arg coth y = x

y ∈ ]−∞,−1[ ∪ ]1,+∞[

)
⇔
(

cothx = y

x ∈ R∗

)

Forthermore, the arg coth function is:

- Differentiable on ]−∞,−1[ ∪ ]1,+∞[ and

(arg coth)′ y =
1

1− y2 ,

in fact

∀y ∈ ]−∞,−1[ ∪ ]1,+∞[ : arg coth y = x⇔ y = cothx

and
(arg coth)′ y =

1

(cothx)′

=
1

1− coth2 x

=
1

1− y2 .

See Figure 31

Figure 39 : coth and arg coth
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Remark 3.4.21 Logarithmic expression of arg coth y

∀y ∈ ]−∞,−1[ ∪ ]1,+∞[ : arg coth y =
1

2
ln
y + 1

y − 1
.

Indeed

∀ (y, x) ∈ ]−∞,−1[ ∪ ]1,+∞[× R∗, x = arg coth y ⇔ y = cothx =
ex + e−x

ex − e−x

⇔ y =
e2x + 1

e2x − 1
⇔ y

(
e2x − 1

)
= e2x + 1

⇔ e2x =
y + 1

y − 1

⇒ x =
1

2
ln
y + 1

y − 1
.


