Chapter 3

Real Functions of a Real Variable
Dr.L.. DERBAL

3.1 Introduction

In this chapter the key notion of a continuous function is introduced, followed by several
important theorems about continuous functions. We deal exclusively with functions

taking values in the set of real numbers (that is, real-valued functions).

3.1.1 Bounded functions, monotonic functions

Definition 3.1.1 Let f: D CR — R be a function. It is said that
a) f is said to be bounded above on D if

IM eR,Vx e D: f(zx) < M.
b) f is said to be bounded below on D if
dmeR, Ve e D: f(x) >m.
c) f is bounded on D if f is both bounded above and below on D, i.e. if
M >0,Vz e D:|f(z)] <M or3IM,3m e R,Vx € D:m < f(z) < M.
1/ f(x) = cos(x) is bounded because Vz € R: —1 < cos (z) < 1.
2/ f(z) = €" is bounded below because Vz € R: e* > 0.

3/ f(z) = 2%s not bounded.

35



3. Real Functions of a Real Variable Dr.L. DERBAL 36

Definition 3.1.2 Let f: D — R be a function. We say that:

a) f is increasing over D if

Vo,y €D,z <y= f(z) < f(y).
b) f is strictly increasing over D if

Ve, ye D,z <y= f(z) < f(y).
c)f is decreasing over D if

Ve, ye D, x <y= f(z) > f(y).
d) f is strictly decreasing over D if

Ve, ye D,z <y= f(z) > f(y).

e) f is monotonic (or strictly monotonic) on D if f is increasing or decreasing (or

strictly increasing or decreasing) on D.
i) The exponential function exp : R — R is strictly increasing.

ii) The absolute value function z — |z| defined on R is not monotonic.

3.1.2 0Odd, even, periodic function

Definition 3.1.3 (Parity) Let I be a symmetric interval with respect to 0 in R . Let
f:1I— R be a function. We say that:

i) fis even if Ve € I : f(—x) = f(x).

i) [ is odd if Ve € I : f(—z) = —f(x).

Remark 3.1.4 fis even if and only if its graph is symmetric with respect to the y-axis

and f is odd if and only if its graph is symmetric with respect to at the origin.

j'_“ y a~

=y

Figure 13 : Even function Figure 14 : Odd function
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(a) ()
Figure 15 : Parity function
(a) For any even integer n, f (x) az™ is an even function,

(b) For any odd integer n, f (z) az", is an odd function.

Let f : R — R be a function and T be a real number,

Definition 3.1.5 (Periodicity)
T > 0. The function f is called periodic of period T if Ve € R, f(z +T) = f(x)

b §-—--

x

1

i

i
-—

x

- Figure 16: Periodic function
The tangent function is

Example 3.1.6 The functions sin and cos are 2m-periodic.
m-periodic.
3.1.3 Algebraic operations on functions

The set of functions of D C R in R, is denoted F(D, R).

Definition 3.1.7 Let f and g € F(D,R) and A € R. We define
e Sum of two functions f+g:xz — (f +9)(z) = f(x) + g(x).

o For \e R, A\f 1z — (\f)(x) = \f(x).
e Product of two functions fg:x — (fg)(z) = f(z)g(z).
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Remark 3.1.8 The functions f + g, Af and fg are functions belonging to F(D,R).

Figure 17: Sum of functions

Definition 3.1.9 Let f and g € F(D,R), we say that
of <gifVzeD, f(z) < g(x).
o f<gifvxeD,f(x)<g(z).

Example 3.1.10 Let f and g be two functions defined on 10,1 by f(z) = x, g(x) = 22
. We have g < f, because Yz €]0,1[ , 2° < x.

3.1.4 Limit of a function

General definitions

Let f: I — R be a function defined over an interval I of R. Let x¢p € R be a point of 1

or an end of I.
Definition 3.1.11 Let [ € R. We say that f has [ for limit in xq if,
Ve>0,30 >0,Ve el, |z —xo|<d=|f(z)—1] <e.

In this case, we write lim f (z) = 1.
T—T0

Example 3.1.12 Consider the function f(x) = 2z — 1 which is defined on R. At the
point x = 1, we have limlf (x) = 1. Indeed, for alle > 0, we have |f(z)—1| = 2|z—1| <€,
r—

if we have |x — 1] < g The right choice will then be to take 6 = %

Uniqueness of the limit

Proposition 3.1.13 If f admits a limit at the point xg, this limit is unique.
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Proof. If f admits two limits I; and [l at the point xg, then we have, by definition,
Ve > 0,

36, > O,Vazel,if\x—xo|<61:>|f(x)—l1|<§.
365 > O,Vmel,if\m—m(ﬂ<62:>|f(:13)—lg|<§.

Let § = min(d1,d2) > 0, then

=l < |f(x) =L+ [f(z) — 12| <e

|11 — 1o

Since € is any, for € = resultsin [y =ly. =

Limit to the right, limit to the left.

Definition 3.1.14 We say that the function f admits | as the limit to the right of o,
as x tends to xg, if for all € > 0 there exists a 6 > 0, such that: To < x < xg+ 0, results

in |f(x) =1 <e In this case, we will write:

lim f(z)=10or lim f(x)=1.

T—Tq xzxo

We say that the function f admits | as the limit to the left of xo, as x tends to xy,
if for all € > 0 there exists a § > 0, such that: xog— 6 < x < xg, results in |f(x) — 1] <e.

In this case, we will write:

lim f(zx)=1or lim f(x)=1

xﬂxa wixo
Example 3.1.15 The function v € RT™ — \/x tends to 0 when z — 0.
Remark 3.1.16 If a function f has a limit | to the left of the point xo and a limit l'to

the right of xq, then the existence of a limit of xg, is both necessary and sufficient for
1=1.

Example 3.1.17 Consider the function defined by

{ 1, ifz >0,

J@) = 1, ifz <0.

It admits 1 as the limit to the right of 0 and —1 as the limit to the left of 0. But it does

not admit any limait to point 0.
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Cases where x becomes infinite

We will pose by definition

a) lim f(x)=1,if

r—+00

Ve > 0, 3A > 0, such that x > A = |f(z) — | < e
b) lim f(z)=1,if
Ve >0, 3A > 0, such that x < —A = |f(z) — ]| <e.

Infinite Limit

Let g € R. By definition, we pose

a) lim f(z) = 400,

T—T0

VA >0, 30 > 0, such that |z — 2| < d = f(z) > A.

b) lim f(z) = —o0, if

T—x0

VA >0, 3§ > 0, such that |z — zo| < 0 = f(x) < —A.
If xg = +00 or xg = —00, we put
a) lim f(z) = +oo,

VA >0, 3B > 0, such that x > B = f(x) > A.

b) lim f(x) = +oo,

r——00

VA >0, 3B > 0, such that x < —B = f(z) > A.

c) lim f(z)=—o0,

Tr——+00

VA >0, 3B > 0, such that x > B = f(z) < —A.

d) lim f(z) = —oc,

VA >0, 3B > 0, such that z < —B = f(z) < —A.
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3.1.5 Limit theorems

Theorem 3.1.18 Let f : [a,b] — R and zg €la,b]. The following two properties are

equivalent:
(1) lim f(2) = 1,
T—x0

(2) For any sequence (Tn)neN, Tn €)a,b| such that lim xz, = xo, then lim f(x,) =
n—-+00 n—+o0o

l.

Exercise 3.1.19 1) lin})sin (1) does not exist, and 2) lin%:r sin (%) =0.
r— r—

Solution 3.1.20 In fact :

1) Let z,, = we have : xp, # 0 and x, — 0 if n — +00. But

1 T
1 _— — q] 2 1 —) = —1 ’I’L,
sin (xn) sin <( n+1) 5 (-1)
for all n € N. However, this sequence does not converge (i.e. the limit does not exist).

2) Suppose x, # 0 and x, — 0. Then
. 1
sin <) ' < zpl.
T,

"(5)
Tpsin [ — || = |xg|
In

Ty Sin (ﬁ)‘ = 0.

1
PESHEE

0<

By the Gendarmes’ Theorem, lim
n—-—+00

3.1.6 Operations of Limits

Theorem 3.1.21 Let f,g : [a,b] — R and zy €|a,b|, such that Ii_>m f(z) =1 and
lim g (z) =1, Then o
T tim [f (@) + g (@) = 1+ 1

b) ﬁZHQ;O (Af(x)) = Al for any A € R.

) Tim f (). () = U

@) T |1 ()] = 1]

) Tim |f (2) ~ 1] =0,

lim £ ) _ ;7 if I # 0.

v0 g (1)

Theorem 3.1.22 Let f : [a,b] — [¢,d] and g : [¢,d] — R and zg €]a,b], yo € [c,d], such
that lim f (x) =yo and lim g (y) =1 Then lim (go f) (z) = (.
r—xQ T—Yo T—T0
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Proposition 3.1.23 Let f,g: [a,b] — R and xo €|a, b, we have
1
a) If lim f (z) = +o0, then lim —— = 0.
T—T(

AT
b) If :ch—{gof (x) = —o0, then :Cli_)rgof @ =0.

c)If f <g, and lim f(x) =1, lim g(z) =1, thenl <.
r—TQ T—x0

d) If f <g, and lim f(x) = +oo, then lim g(z) = +oo.
T—x0 T—T0

Theorem 3.1.24 Let f,g,h: [a,b] — R and xg €]a,b[, we have
i) f(z) < g(z) < h(zx), for all x €]a,b[ ,
i1) xlgr; f(z)= xll)n; h(z)=1€R.
Then xfirgog (x) = l.o

Indeterminate forms

0 0

400 — o0, 0 X o0, E, —, 1°°, co”.
oo’ 0
Proposition 3.1.25 Let f and g be two functions if:
1) f is a bounded function in the neighbourhood of o (3D a neighbourhood of x¢)
s.t
Im, M e RVreD :m< f(x) <M
2) lim g (z) = 0.

T—T0

Then lim f(x) x g(x) =0
T—T0

Example 3.1.26 Calculate the limit lim e

r—+oco I

Indeed : sin(oo) is not defined but it is bounded because |sinx| < 1 and 11141_1 — =0,
T—T00
i
so lim 2% =,
r—+oo I

Equivalent functions

Definition 3.1.27 Let f and g be two functions defined in a neighborhood of a point xg
(g € R or zp = £o0).
We assume, moreover, that g does not cancel in a neighborhood of xq, except perhaps

in xog where we can have g(xp) = 0.

We say that f is equivalent to g in a neighborhood of xg if, and only if: lim ggi; -
T—T0

We denote this by f ~ g. We also say that f and g are equivalent to the neighborhood
o

of xg or in xg.
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1 1
1) The functions f(z) = In(x 4+ 1) and g(z) = x are equivalent since limm =1

z—0 X
We note In(z + 1) el

. N . . sinz
2) Always, in the vicinity of zero, sinx ~ z because hn%) — =1
xr— €T

3.2 Continuity of a function

3.2.1 General definition

Definition 3.2.1 Let us consider a function f : I — R, where I is an interval of R.

We say that f is continuous at the point zog € I if lim f(z) = f(=o), i.e. if
T—TQ

Ve > 0,36 > 0,Ve € I,|x — x| < 0= |f(z) — f(zo)| < e

f(zo) + ¢

J(o) prasmmrommmnnneceneaccy )
flzo) -« |

0 //

- o
Tg— 0 To To+ 0

Figure 18: Continuity at the point xg

Example 3.2.2 Let the real function f be denied by

1

x sin <> , ifx #0,
x

0, if x =0.

f ) =

At the point xg = 0, we have

@) = flao) = fosin (1) < .
For e > 0, we will choose = €. Thus
[ <0 = [f(x) = flzo)| <e
So f is continuous at the point xg = 0.

Definition 3.2.3 A function defined on an interval I is continuous on I if it is con-

tinuous at any point of I. The set of continuous functions on I is denoted by C(I).
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Continuity on the left, continuity on the right

Definition 3.2.4 Let us consider a function f : I — R, where I is an interval of R.
(1) The function f is said to be continuous on the left at zo if lim f(z) = f(xo),

T
1.€e.

Ve>0,30 >0,Ve eI, 0<zg—x<d=|f(z)— f(zo)] <€

(2) The function f is said to be continuous on the right at xq if lim+f (x) = f(xo), i.e.

Zﬂxo

Ve>0,30 >0,Veel, 0<z—x9<d=|f(x)— f(zo)] <e.

i
|
|
|
|
|
|
9 x

m________
>

lim f(x) = f(a) lim f(x) = f(a)
K—ed K—=ar
left continuous at x=a right continuous at x=a

Figure 19: Left (right)Continuous at x=a

Note. The function f is continuous at zg if and only if f is continuous to the left

and right of the point xo. f is continuous at xp & lim f (x) = lim+f (x) = f(=o).

T—T( T—Tq

Summary of discontinuities

lim f(x)} # f(a) lim f(x)} # lim fix) Either lim fix)=2ex or lim fix)=2c
o= K--i* X X—a ¥

Figure 20 : discontinuity at point a
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Example 3.2.5 The function defined by

)1 if x>0,
f($)_{—1 if £ <0.

is continuous on R*. At the point xqg = 0, the function f is continuous on the left, but

it 18 not continuous on the right because

lim f(z) = f(0) =—1 and lim f(z)=1+# f(0)

z—0~ z—0t

Y

=

Figure 21 : discontinuity at point O

Definition 3.2.6 (Continuity on a closed interval.) A function f is continuous on
the closed interval [a,b] if :

1. it is continuous on the open interval (a,b);

2. it is right continuous at point a :

lim_f () = f(a);

r—at

and

3. it s left continuous at point b :

lim f (x) = £(b).

r—b—

Example 3.2.7 The function f () = v/x is continuous on the (closed) interval [0, +00) .
The function f (x) = /4 — x is continuous on the (closed) interval (—oo,4].
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Continuity extension

Definition 3.2.8 Let I be an interval, xg a point of I. If the function f is not defined
at the point xoy € I and admits at this point a finite limit denoted I, the function defined

by
(m):{ /@), if = # o,

[, if T = xo.

is said to be a continuity extension of f at the point xq.

Example 3.2.9 The function

1
f(x) = zsin

18 defined and continues on R*. Now, for all x € R* we have

|f(@)] =

!
xsin —| < |z|
x

So lir%f (x) = 0. The continuity extension of f to the point O is therefore the function
Tr—
f defined by:
1
~ rsin —, if x #0,
fla) = x
0, if t =0.

3.2.2 Operations on continuous functions

Definition 3.2.10 Let I be an interval, and f and g functions defined on I and con-
tinuous at xg € I. Then

(1) \f is continuous at xo, (A € R).

(2) f+ g is continuous at xy.

(8) f.g is continuous at x.

(4) £ (if g(xo) # 0) is continuous at xy.

3.2.3 Continuity of composition function

Theorem 3.2.11 If g is continuous at xo and f is continuous at g (zp), then the com-

position function f o g is continuous at xg.

Theorem 3.2.12 If f : [a,b] — R is continuous then f is bounded.
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Definition 3.2.13 (Absolute Minimum / Maximum) Let I be an interval and f :
I — R. Then, f achieves an absolute minimum at ¢ € Lif Vo € I, f(z) > f(c).
Similarly, f achieves an absolute mazimum at d € I,if Ve € I, f(x) < f(d).

| I ——

L)
\ - 3 C L

Figure 22 : Mazrimum and minimum

3.2.4 The Intermediate Value Theorem

Whether or not an equation has a solution is an important question in mathematics.

Theorem 3.2.14 (Intermediate Value Theorem IVT) If f is continuous on the
interval [a,b] and N is between f(a) and f(b),where f(a) # f(b), then there is a
number ¢ in (a,b) such that f (c¢) = N

The IVT guarantees that if .f is continuous and f (a) < N < f (b), the line y = N
intersects the function at some point £ = ¢. Such a number ¢ is between a and b and
has the property that f (c) = N (see Figure 23)

by + T — fb) 1
1 Nd -

fia) : ._./ f{a) :

Figure 23 : Intermediate Value Theorem

(a) A continuous function where IVT holds for a single value c.
(b) A discontinuous function where IVT fails to hold.
(¢) A continuous function where IVT holds for multiple values in (a,b) .

The Intermediate Value Theorem is most frequently used for N = 0.

Exercise 3.2.15 Show that there is a solution of /x +x =1 in the interval (0,8).
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Solution 3.2.16 Let f(z) = Jx+x—1, a =0, and b = 8, Since /z, x — 1 are
continuous on R, and the sum of continuous functions is again continuous, we have that
f is continuous on R, thus in particular, f is continuous on [0,8]. We have f(a) =
f0)=v0+0—-1=—1and f(b) = f(8) = V/8+8—1=9. Thus N = 0 lies between
fla) = =1 and f(b) =9, so the conditions of the IVT are satisfied. So, there exists a
number ¢ in (0,8) such that f(c) = 0. This means that ¢ satisfies/c+c—1 =0, in
otherwords, is a solution for the equation given.

Alternatively we can let f(x) = Yz +xz, N=1,a=0 and b =8. Then as before f
is the sum of two continuous functions, so is also continuous everywhere, in particular,
continuous on the interval [0,8], f(a) = f(0) = V/0+0=0 and f(b) = f(8) = V/8+8 =
10. Thus N =1 lies between f(a) =0 and f(b) = 10, so the conditions of the IVT are
satisfied. So, there exists a number ¢ in (0,8) such that f(c) = 1. This means that ¢

satisfies /c+ ¢ =1, in otherwords, is a solution for the equation given.

Proposition 3.2.17 Let f be a continuous function on interval [a,b], such that
f(a).f(b) <0, there exists ¢ €]a, b such that f(c) = 0.

3.2.5 Uniform Continuity
Recall the definition of continuityon an interval I : let xg € I we have
Ve > 0,30 (e,29) > 0,Va € I, |x — x| < § = |f(x) — f(zo)| <e.

Here, § (€, z¢) indicates that 6 can depend on € and xy.

1
Exercise 3.2.18 Consider the function f(x) = —. f is continuous on (0,1).
x

1 1
Solution 3.2.19 We want to show that if |x — xo| < 0, then |- — —| < e. Specifically,
€T i)

2
. o T
we can choose § = min { 0 } .

22 ¢
In fact
Zo

2

zo
= |z| > zo — |z — x| > —.

|z — zo] < 5
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1 2
Thus, — < —.Therefore,
lz| @0

Definition 3.2.20 (Uniformly Continuous) Let f : I — R. Then f is uniformly

continuous on I if
Ve >0,36(e) >0, Va,yel, |[x —y|<d=|f(z)— fly)| <e
Remark 3.2.21 Thus, in the definition of uniform continuity, § only depends on €!.

Example 3.2.22 The function f(x) = x? is uniformly continuous on [0, 1].
Let € > 0.Choose § = % Then, if z,y € [0,1] then |z —y| < & implies that

|2 — | =[x —yllz +y| <20z —y| <25 =«
Remark 3.2.23 There are continuous functions that are not uniformly continuous.

1
Example 3.2.24 f (z) = — is not uniformly continuous on (0,1), but first we consider
the negation of the definition.
Negation of uniform continuity : [ is not uniformly continuous on I if

dep > 0,¥6 >0, Az, yel, |[x—yl <d=|f(x)— fly)] > eo.
<

Then |x —y| = < § and

| s

1
Let § > 0, choose eg =2, y = min{&, 2} and T =

NS
N <

1 1 2 1 1
S == 22
r oy y oy Yy
Theorem 3.2.25 Let f : [a,b] — R. Then, f is continuous if and only if f is uniformly

continuous.

The following procedure is a practical method of showing that a function is uniformly

continuous.
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Definition 3.2.26 A function f definite of I C R in R is said to be k-Lipschitzian over
1 if:
3k > 0,va,y € I:[f(x) = f(y)] < klz -yl

Remark 3.2.27 A k-Lipschitzian function on I is uniformly continuous on I.
Indeed; for e > 0, we just need to take § = %, such that

Ve,yel: |z —yl<d=|f(x) = fly) <klz—y| <e

Definition 3.2.28 A function f is said to be contracting on I if f is k-Lipschitzian
with 0 < k < 1.

Conclusion 3.2.29 A contracting function on I is uniformly continuous on I
Here is a theorem very used in practice to show that a function is bijective.

Theorem 3.2.30 Let f : I — R be a function defined on an interval I of R. If f is

continuous and strictly monotonic on I, so

1. f establishes a bijection of the interval I in the image interval J = f(I),
2. The inverse function f~!:.J — I is continuous and strictly monotonic on J and

it has the same direction of variation as f.

e
s
e
1 e
- . /s
f=(z) y
s
b
s
s
7
Vs
s
r

Figure 24 : inverse function
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3.3 Derivable function

3.3.1 Definition and properties

Definition 3.3.1 Let f be defined in a §-neighbourhood (xo—0,x9+0) of xg € R (6 > 0).
We say that f is differentiable at xq if the limit

o f@) ~ faw)

=z T — I
exists in R. This limit, denoted by f' (xo), is called the derivative of [ at xq .

Furthermore, if f is differentiable at every xo € I (an interval), we write f' or e
x
for the function f’.

Example 3.3.2 1) f(z) =c= f'(z9) = lim xc_—; =0= f'(z) =0, Vz € R.
22— 2 ’ 0
2) f(z) = 2% = f'(z9) = lim O — lim (z+ ) = 20 = f' (z) = 2.

T—T0 T — Ty ~ TTo
1 1

— / 1 \f_\/%_ . N
I ) e T R v

2z
Remark 3.3.3 By substituting x — xg = h, we find:
f(zo+h) — f(zo)

= f'(z) =

}llin% Y exists and is finite < ( f is derivative at xq)
Example 3.3.4 Let f : R — R be defined by f(z) = 2% . The derivative of f at a point
zg € R is

/ _ o flwo+h) = fxo) _ . (w0 +h)? -
fleo) = Jim™—, R I
h? + 2hxq
= lim——— =1 2x0) = 2
) h hlg%)(th %) o

Theorem 3.3.5 If f : I — R is differentiable at xo € I, then f is continuous at xg.

Proof.

F (o) = }lli_%f(l“o + h}z — f(20)
Hence

lim (f(z) = f(z0)) = lim (f(zo+h) = f(z0))

h—0
_ 1imf(ﬁfo +h) — f(xo)
h—0 h
pr— / 1. P— .
f(zo) limh =0

h
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Therefore

lim f(z) = f(z0)

h—0
]

Example 3.3.6 Let f: R — R be defined by f(x) = |z|. Then f is differentiable at any
x € R—{0}. But f is not differentiable at 0.

In fact, we have :

If £ > 0, then
i L&) = fl@)
h—0 h
If x <0, then
i &t = fl@)
h—0 h

Therefore, the derivative does not exist at 0, as

S (CRADEY (GNP (GRS DRy i

h—0+ h h—0— h

Note that the function f in the above example is continuous at 0 : thus, continuity

does not imply differentiability. However, the converse is true.

7(e)=hd={ * *20 =] 1 w20

Figure 25 : f and f’ s.t f(z)=|z|

3.3.2 One-sided derivatives

1) In a manner similar to the definition of the one-sided limit, we may also define the

left and right derivatives of f at xg via

flz+h) - f(z)

_ . +h) = f(z)
! — 1 ! — 1 f(x
=

f is derivative on the right and left at xg f is derivative at xg
2) | and < | and

fL (o) = f4 (20) [ (wo) = fL (w0) = fL (20)
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3) If fL (xz0) # f! (x0), then f is not differentiable at zg and we say that zo is an

angular point.

Remark 3.3.7 If f is differentiable at xo € R then there exists a function e(x) such
that lime(z) =0 and

z—0
f (@) = f (z0) + 1" (wo0) (x — o) + &(x) (= — @0)

Indeed, define
f(z) — f(zo)

(@) == SO f (@)

Then e(xz) — 0 as x — 0 and f (x) = f (x0) + [ (x0) (x — x0) + e(z) (x — x0)

This enables one to re-interpret the formula in the above Remark as follows. If f is
differentiable at zy € R, then one can write for the value of f(x = zo+h), that is “near”
xo:

f (w0 + ) = f (w0) + ' (z0) h+ 0 (R)

where the notation o(h) reads as “little o of h”, and denotes any function which has the

o(h)

followi ty: lim ——= = 0.
ollowing property: lim —

3.3.3 Operations on derivative functions:

Theorem 3.3.8 Let f : I — R, g: I — R be differentiable at xo € I. Then,

1.(Linearity) Vo € R, (aof + g)'(z0) = af1(zo) + g/(z0)-
2. (Product rule) (fg)!(zo) = f1(xo)g(zo) + f(z0)g/(x0)-

3.(Quotient rule) If g(x) # 0 for allx € I, then <£>/ (xo) = f/(l‘o)g(:r(;)z(— f)(xo)gl(:z‘o) .
o

Proof.
1.

i (@f +9) (2) = (af +g) (o) lim n

T—To T — xg T—T0 T — X0 T — X

— af' (@) +¢ (2).

(af($) — f(@o) | g(z) - g(l‘o))

2. We first write

(f9) (z) — (fg) (xo) _ flz)— f(ﬂfo)g(x) + 7 (w0) 9(x) — g(xo)

T — X T — X T — X0
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then

i U@ U0 (o) [F@) = o) ()~ glao)

T—To T — X0 T—I0 T — xg T — xq

= f'(w0)g (z0) + f (z0) ' (x0)

3.The result follows from

()= (3) e @)~ 9 (@) f (@)

T — Xo 9(@9(1’0) (96—3?0)
B f(x) — f(xo) oy Y (z) — g(o) .
= g e @) " g g (e0) (@ —a0) O
then
f f
. (5)@-(5) e L F @) g (@) ()
T—x0 T — I T—=ro g ($) g (xo) (33 - 330)
— lim f(x) — f(=xo) g (z) — g(wo) .
= <g<m>g @) @ —70)° ™7 5@ g (w0) (@ —m0)” °)>
_ J1(z0)g(z0) — f(x0)g/(z0)
g*(o) '
| |

Theorem 3.3.9 If g is differentiable at xo € R and f is differentiable at g(x¢), then
f o g is differentiable at xo and

(fo9) (z0) = f' (g (0)) ¢ (x0)
Proof. By definition of the derivative and Remark 4.3.7, we have

f ) = f (o) = f (wo) (v — wo) +(¥) (y — %o)

where e(y) — 0 as y — yo. substitute y and yo in the above equality by y = g ()
and yg = g (xg), then divide both sides by x — xg, to get

FO@) = 1lg@) 9@ o) o 0(@) —g(m)

x — Xo Tr — X0 Tr — X9
By Theorem 4.3.5, g is continuous at xg. Hence y = g (z) — g (x9) = yo as x — xq,
and e(g (z)) — 0 as © — z¢.Passing to limit x — x in the above equality yields the

required result. m
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Theorem 3.3.10 Let f be continuous and strictly increasing on (a,b). Suppose that,
for some g € (a,b), f is differentiable at xo and f'(xg) # 0. Then the inverse function
g = f~Lis differentiable at yo = f(xq) and

g (yo) = (writes xqg as a function of yg)

1
f' (o)
Example 3.3.11 Define

f: R—>R
z— a2
Then f'(0) =0 and [ is not invertible on any neighborhood of the origin, because it is
non-monotonic. On the other hand, if

f: ]0,400[—]0, 00|

’
$|—>1‘2

then f1(x) = 2z # 0 and the inverse function f~' : is given by

) = V.

The formula for the inverse of the derivative gives

or, writing x = =1 (y),

Example 3.3.12 Define f : R — R by f(x) = 2>. Then f is strictly increasing. The

inverse function f~': R — R is given by

Y.

~
L
—~
<
S—
Il

Then f'(0) = 0 and f~ is not differentiable at f (0) =0, On the other hand, f~lis

differentiable at non-zero points of R, with

. 1
or, writing x = Y3,
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3.3.4 Derivative of usual functions

w represents a function x — u(x).

. . function | derivative
function | derivative —
n n—
" nxn—l (n c Z) li TL,LL,SL ) (TL € Z)
| I - _B
z 2 z 1w
Vi I'T Vi L p
x —_—— —_—
2z 2.\/[t
z@ ar® ! (a € R) e ap/ pe=t (e € R)
ev e’ et et
1 7
Inz — In H
i 1
Ccos T —sinz Cos [ — i sin p
sinx Ccos ¥ sin g W cos
1 7
tan x 1+tan2x:72 t 1+ tan2 r_ M
cos? x an (1+ tan® ) p cos?

3.3.5 The n'" derivative

Definition 3.3.13 Let f : I — R be a differentiable function and let f' be its derivative.
If the function f' : I — R is also differentiable, we denote f" = (f') the second derivative

of f. More generally we note:
O = f, gV = ', fB = 7 and f0H0 = ()

If the n'" derivative f™) exists, we say that f is n times differentiable.

- If f isn times differentiable on I and f™ is continuous on I, we say that f belongs
to class C™, and we write f € C™(I,R).

- If f is differentiable an infinite number of times, i.e., ¥n € N, f) ezists and is
continuous, we say that f belongs to class C*°, and we write f € C* (I,R)

- If f is continuous but not differentiable, we say that f belongs to class C°, and we
write f € CO(I,R).

Example 3.3.14 Polynomial functions, cosx, sinx, e are functions belonging to class
C* on R.

Example 3.3.15 Computing the n'" derivative of the function f (x) =Inx
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1 (-1).1 (-1)%.1.2
_ ! _ " _ 3 _
and from this
—1)" 1t (n—1)!
And the proof by induction.
Example 3.3.16 Using the same method, prove that.
sin™ 2 = sin (:L’ + n%)
cos™x = cos (a: + ng)
For sin™ 2: we have
ineM = — g f
sinx COST = sIn (:E + 2)
sin® 2z = sin <a: + f)l = cos <a: + E) = sin (x + 21>
- 2/ 2/ 2

!
sin® gz = sin (x + 2%) = cos (m + 2%) = sin (a: + 3%)

sin™z = sin (m + n—)

In the same way we demonstrate the second.

Leibniz’s rule:

Let f and g be two functions belonging to class C™(I,R). Then f.g is also a function in
class C™(I,R), and we have:

(f.9)" = Crfghn=h,
k=0

|
kE n:
where Cn = m
Proof of Leibniz Rule

The Leibniz rule can be proved with the help of mathematical induction. Let f(x)
and g(z) be n times differentiable functions. Applying the initial case of mathematical

induction for n = 1 we have the following expression.

(f(2)-9(x))" = f'(2).9(x) + f(2).¢'(x)
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Which is the simple product rule and it holds true for n = 1. Let us assume that this

statement is true for all n > 1, and we have the below expression.

(f)™ = S CEfRGn-R = pOG) L Gk pBIgn=) 4 ) 0)

(f.9) ") = ((f.g)(”))/:icg (f(k)g(’ﬂ—k))/

= ch’< FlD) g(nk) 4 (k) n—i—l—k))

k=0 k=0

We change the variable in the first sum: p =k + 1

n+1

chf(kﬂ)g(n—k) - ZCﬁ_lf(p)g(”H_p).
k=0 p=1

Therefore: "
(f.g)(nJrl) :chﬁbflf(k) (n+1—k) +ch n+1 k)
k=1
consequently

n

(£.9)") = ( (ch+ch) f<k>g<n+1-k>) + CpfrgO) 4 OO g,
k

=1

Note that C" = C% =1 and Ck~! 4+ CF = CF

i1 then

(n+1) (ch+ n+1 k) ) + f n+1) + f(O n+1).

Note that we can include the last two terms in the sum
02+1f(0)g(n+1) — f(O)g(nH) and
ngrrllf(nﬂ)g(nﬂ—nﬂ) = 1) g0)

then
n+1

(fg TL+1 ch f(k (n+1 k)

So, according to the proof by 1nduct10n

(vneN)(Vzel): (f.9)™ (z ch F® (2) g9 (2) .
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Example 3.3.17 Calculate the n'* derivative of the function:
f()=(2>+z)Inz and g(z)=e"sinz.

1) f(z)= (:c2 +x) Inz = fi (x).91 (x) or f1(z) =2%+ 2 and g1 (v) =Inx

fl(o) (z) =2’ +2= fl(l) () =2x+1, f1(2) (x) =2, fl(k) (x) =0 forallk >3 (k€ N),
=D (1)
:L-n

I

fM (@) = (frg) ch 8 ()

= 0p0glm <w>+c,%f1 Yo" D (@) + C2 P g () +0

() LD gy gy D=t =)

2) g(z) =€ sinx = fo(x).92 () or fo(x) =€" and g2 () =sinz.
fén) (x) = e” and ggn) () = sin <:1c + ng)

9" (z) = (fo02) ZC'“fg ()

= ZC’ke sm< +(n—k) g)

Definition 3.3.18 ( Critical Points) Let ¢ be an interior point in the domain of f.
We say that ¢ is a critical point of f if f'(c) = O or f'(c) is undefined.

Theorem 3.3.19 (Fermat’s Theorem) If f has a local extremum at ¢ and f is dif-
ferentiable at c, then f'(c) = 0.

Exercise 3.3.20 Find the local extremum (mazimum and minimum) over the specified

interval
fz)=—2*+3z -2 over|[L,3].

Solution 3.3.21 Step 1. FEwvaluate f at the endpoints x =1 and x = 3.
f(1)=0 and f(3) = —2.
. , 3 3. , 3
Step 2. Since f' (x) = —-2x+3=0atx = iand s the interval [1,3], f|{ = | =

1
1 is a candidate for a local extremum of f over [1,3].
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Step 3. We compare the values found in steps 1 and 2. We find that the local ex-

tremum minimum of f is —2, and it occurs at x = 3. The local extremum mazimum of

fis 7 and it occurs at T = 5 08 shown in Figure

21 i(-_a 2)

37T

Figure 26 : This function has both local extremum mazimum and minimum.

Method of finding points where the function f possesses extreme values:

Theorem 3.3.22 Let f € F(D,R) be differentiable on D, assuming that f" exists,let
xo € D then:

/ _
{ f' (o) = (()) = x9 1S a local minimum point of f
( 0 , n .
0 = x9 s a local minimum point of f

Example 3.3.23 Let the function f (x) = cosz and v9 =0, x1 = 7.

"(0)=0
f'(x) =—sinz = { ;,E )) 0 = x9 and x1 are critical points.
ie =
f7(0) =—-1<0— xz9g=0 is a local mazimum point of f.

f"(z) = —cosz = {

f"(m)=1>0 — x1 = is a local minimum point of f.
The general case: Let f € C(™ (D, R), where:

f'(x0) = f"(wo) = .. = f" V(o) = 0, F(x0) #0
Casel: If n is even

f™(z0) > 0 = =z is a local minimum point of f.

f™(x0) < 0 = zgis a local maximum point of f
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Case2: If n is odd
7 (20) # 0 = zg is not extreme point but rather an inflection point.
Example 3.3.24 29 =0 and f (z) = 23

f'(z) = 32°= f'(0)=0— f has a critical point at o =0
f'(@) = 6z=f"(0)=0
@) = 6= 17 0) £0

With n = 3 being an odd number and f" (x) # 0, hence xg = 0 is an inflection point,

and f does not possess an extreme value at xg = 0.

Example 3.3.25 Let the function f : R — R where f (z) = 6lnz — 223 + 922 — 18z.

Does f have an extreme value at xg = 07

fi(z) = g—6x2+18x—18:>f’(1):0
(@) = —%—12x+18:>f”(1):0
e Y U

fW) = —?:f(“) (1) # 0.

Since n = 4 is even number and @ (1) < 0, then zo = lis a local mazimum point
of f and f (1) = —11 is the local maximum value of f.

Theorem 3.3.26 (Rolle’s Theorem) Let f : [a,b] — R be a continuous function over

the closed interval [a,b] and differentiable over the open interval |a,b[ such that

then there exists at least one ¢ €]a, b such that f'c) = 0.

Proof. - If f is constant over [a, b] then it is obvious (f' = 0).

-Otherwise; since f is continuous on [a, b] then it is bounded on [a, b], so

sup f(z) = M,
z€la,b]

exists, then we have
Vz €la,bf: f(z) < M,
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we can assume that M is different from f(a) = f(b) and therefore there exists ¢ in |a, b|
such that M = f(c), therefore

Vz €la, bf: f(z) < f(e),

then ¢ is a local maximum of f so according to Fermat’s theorem f'(c) =0. m

fla) = f(B)f=--=-F-- ,
0 rla [ fIJ

(a) (b) (c)
Figure 27 :

- If a differentiable function f satisfies f (a) = f (b), then its derivative must be zero at some point (s)
between a and b

- This means that the curve at the point (¢, f (¢)) accepts a tangent parallel to the z-axis.

Example 3.3.27 Can Rolle’s Theorem be applied to the function f (z) = 2% + 1 in the
interval [—1,1]7

We have f is continuous in the interval [—1,1], differentiable on |—1,1], and f(1) =
f(=1). Therefore, Rolle’s Theorem can be applied.

Example 3.3.28 Can Rolle’s Theorem be applied to the function f (x) = (|z| — 1) on
[—1,1].

We have f is continuous over [—1,1] and f(1) = f(—1) = 0, but f'(c) # 0 for any
¢ € |—1,1[because f is not differentiable at x = 0, the conditions of Rolle’s theorem are

not satisfied. In fact, the conclusion does not hold here; there is no ¢ € |—1,1], such

that f'(c) # 0.

fix) = |x] — 1

N

Figure 28 : No c¢ such tha f'(c)=0
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Example 3.3.29 For f (z) = 23 + 1, it is continuous and differentiable on [—1,1].
We have f' (x) = 32%. And thus 3c € |-1,1]: f' (c) = 0.
However, this does not imply that f (a) = f(b). f(—=1)=0# f(1) = 2.

Theorem 3.3.30 (Finite Increment Theorem or Mean Value Theorem) Let f be
continuous over the closed interval [a,b] and differentiable over the open interval |a, b.

Then, there exists at least one point ¢ € |a, b such that

Proof. Set )
)= 1@ - |11 @ - ).

Then ¢ is continuous on [a, b] and differentiable on ]a, b[, and

o) = 10) - [ TO=TO 4 —0) — 0
Therefore, by Rolle’s theorem,
(3c €la,b], ¢ (c) =0) < <Hc €la,bl, f' (c) = W) .

Corollary 3.3.31 If f is defined on an interval and f'(x) = 0 for all x in the interval,

then f is constant there.

Proof. Let a and b be any two points in the interval with a # b. Then, by the Mean

Value Theorem, there is a point z in |a, b] such that

oy = LO=1@)
But f/(z) = 0 for all z in the interval, so
NOEYIO}
b—a

and consequently, f(b) = f(a). Thus the value of f at any two points is the same and f

is constant on the interval. m
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Corollary 3.3.32 If f and g are defined on the same interval and f'(x) = ¢'(x), then

f = g+ c for some number c € R.
The proof is left as an exercise.

Corollary 3.3.33 If f'(z) > 0 (resp. f'(x) < 0) for all x in some interval, then f is

increasing (resp. decreasing) on this interval.

Proof. Consider the case f'(z) > 0. Let a and b be any two points in the interval,

with a < b. By the Mean Value Theorem, there is a point x in ]a, b[ such that

F) = f(a)

fa) = 5=

But f’(z) > 0 for all z in the interval, so that

f(0) — f(a)

b a > 0.

Since b — a > 0, it follows that f(b) > f(a), which proves that f is increasing on the
interval. m

The case f'(z) <0 is left as an exercise.

Example 3.3.34 Using the Finite Increments Theorem on the function f (z) =sinx ,
we prove that
Ve >0:|sinz| < |z|.

Solution 3.3.35 The function f is continuous on R and differentiable on R, so it is

continuous on [0, z] and differentiable on |0, x|, according to the Finite Increments The-

orem:
(Fe €]0,2)) : (f(z) = £(0)) = (z = 0)f(¢)
So:
sinx = xcosc = [sinx| = |z| |cos |
= [sinz| < |z| (|cosz| <1, Vx eR)
Hence:

V> 0:|sinz| < |z|.

Example 3.3.36 Prove that Vz > 0 :

xf_l <ln(l+2z) <z
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1
Solution 3.3.37 We set :f (t) =In(1+t) = f'(t) = o 1is continuous and differen-
tiable on]—1,+oo[. Thus, f is continuous on [0, z] and differentiable on |0, z[. According

to the Finite Increments Theorem:

(e €]0,2)) : (f(z) = £(0)) = (z = 0)f ()
So,

In(1+ x) =T

And we have :

O<c<ar=1<l4e<l+2x

Which implies:

X X
>0, — <
Jora >0, 10 <12

<z,

andIn (14 z) =
Therefore,

l+c¢
forx>0,1+%<ln(1+x)<x

The next theorem is a generalization of the mean value theorem. It is of interest

because of its use in applications.

Theorem 3.3.38 (Cauchy Mean Value Theorem) If f and g are continuous on
[a,b] and differentiable on ]a,b[, then

e € Ja,b[, [f(b) = fa)] g (c) = [g(b) — g (a)] f'(c).
If g(b) # g(a), and ¢'(c) # 0, the above equality can be rewritten as

fb) = fla) _ f(c)
g(b)—g(a) d(c)
Note that if g(z) = x, we obtain the Mean Value Theorem.
Proof. Let h: [a,b] — R be defined by

Then
h(a) = f(b)g (a) — f(a)g (b) = h (D),

so that h satisfies Rolle’s theorem. Therefore,

Je € Ja,b[, h(c) =0 = [f(b) = f(a)lg' (c) = (9 (b) — g (a)] [ (c) = 0.
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3.3.6 Hospital’s Rule:

Eliminate cases of indeterminacy in the form (oo — 00) (0 x 00)

It is used to remove cases of indeterminacy in the formﬁor —.
00

Theorem 3.3.39 Let f and g be differentiable functions near xy in domain D:

Where
Cf@) 0 f(@) oo
@) 07 e hg(e) oo
Therefore, @) @)
1 f/ r) im I =
@) T g ()

(supposing 1 is a defined limit, it could be 0o ).

Proof. By the Cauchy Mean ValueTheorem,
flat+h)—f(a) _ fla+th)
glat+h)—g(a) g (a+th)

for some 0 < ¢ < 1. Now pass to the limit h — 0 to get the result. =

rT—1 0 z -1
Example 3.3.40 1- lim &~ = <> A —1 s im & =1
z—0 sinx 0 x—0COS T rz—0 sinx
1
. Inz oo\ H ,. oz . 1 . Inz
2- lim :<—>—>hm—:hm—:0:>hm—:0.
r—oo el o0 T—00e r—oo e’ r—o0 er
f(z)

Remark 3.3.41 The converse of Hopital’s Rule is not true. It is possible for lim @)
z—xo g (%

!
/() does not exist (where either f or g is not differentiable at xg).

to exist while lim

g (2)
Example 3.3.42
22 sin 1 T sin l
lim f(z) = lim——% :hm.ing:o
a—zog(x) 2—0 sinzx z—0 [ sinx 1
T
1
1 cos P
2rsin — —
/ @ sin — = (x )
f'(@) = lim
z—xo g’ (IL‘) x—0 CoST

|: | 1 1}
2z sin — — cos —
T T (

1
lim cos — does not exist)
x

= lim
x—0 COS T x—0
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doesn’t exist

So lim I'(@)

v—wo g (1)
Eliminate cases of indeterminacy in the form (oo — c0) or (0 x o0)

To eliminate the indeterminacy cases (0 x 0o), we apply Hospital’s rule, we write it in

the form gor g.

(0 x 00) = lim f(2)g(a)= tim L& 20 0
T—T0 r—xQ 1 i 0
g(x) oo
(o0 0) = lim f (@) g (x) = im 71 — r-Z-u
g(x) 0
To remove cases of indeterminacy in the form co — oo we use:
L f(@)

" (00 = 00) = Jim (F (2) ~ 9 () = lim f (@) |1 = s

Applying Hopital’s Rule to / ((q:; , which is of the form @7 we have two cases :
g(x 00

f @) f@]_

a) xli)ngog @) # 1. Hence, $ll>rglof () |1 — 7))
b) lim /(@) = 1.It becomes the indeterminacy of the form oo x 0.
g @)
[ 9(@)
1-1 0
lim (f (2) — g (2)) = lim — &) _ =
T—T0 Tr—X0 1 i O
f () 00
Or
[ (z)
lim —L =2 X g
Tr—xQ ]. ]. X0
9@ -1
f ()
Example 3.3.43 a) lim e *Inz = (0 X 00).
T—-1T00
.1
lim —
. h’ll’ H r—+oo 1
lim = I = lim — =
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1
b) lim ln:1:+— (—o0 4+ 0).

z—0t
1
1 -
lim nz+ - = lim Inz | 1+ %
z—07t x z—0+ Inzx
1 1
= ) 1
limi_ﬂﬁ lim —£~ = lim — - = —o0.
e—0tlnz —oo  z—ot 1 20t T
T
1
1 -
Therefore lim Inz+ — = lim Inz [ 14+ = | = (—o0) (—00) = +00.
z—0t X z—0+ IDLL’

3.4 Elementary functions

We now use power series to strictly define the Exponential, Logarithmic, and Trigono-
metric functions and describe their properties.
3.4.1 Trigonometric functions

Arcsine Function

e133] ~

2 )
x — f(z) =sinz
T
is continuous, strictly increasing over |——, —|, then f is bijective an erefore
i ti trictly i i 57 th is bijecti d theref
T T
f~! exists, is continuous and strictly increasing, and we have f ([75, ED = [-1,1]

and
f-1,1] —>[ }
y — - ()=

arcsiny = sinz =y
1<y<1 )T\ Teac T )
=Y 2 =" =2

Forthermore, the arcsine function is:
- Differentiable on |—1,+1[ and

arcsin y

from where we have

Yy € ]-1,1], (arcsiny)’ =
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in fact

But we have

So

See figure 29

Note

In other words

Arccosine Function

cos? x + sin

(arcsiny)’ =

r=1 & cosx ==
™
& cosz = /1 — sin? (arcsiny) (cosz > 0, on ]—5,

11
(sin a;)' © cosz
1 —sin?z

y € ]-1,1[: arcsiny = z < y = sinz and

S cosx = /1 —1y2.

ot

f 10,7

— [-1,1]

1
(arcsiny) = ————,Vy € ]-1,1][.
V1—y?
y==
15
(aresin)
(sin) :
05 1
I
I
Lis i 05 05 1 I
?T: T
Y -05 9
|
|
-1
=15
-2
Figure 29 : sin and arcsin
sin (arcsiny) = y Vy e [-1,1].
T
arcsin (sinz) = x Vz € [——, —] .
272
. . . T
sinz =y < x =arcsiny if z € {—5, 5

x  — f(z)=cosz
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f is continuous, strictly decreasing over [0, 7], then f is bijective and therefore f~!

exists, is continuous and strictly decreasing , and we have f ([0, 7]) = [—1,1] and

S =151 — (0,7
Yy — f~}(y) = arccosy

arccosy = o o CosTr =Y
-1<y<1 0<z<m )

Forthermore, the arcose function is :
- Differentiable on |—1, +1[ and

from where we have

—1

Vv

Vy € |-1,1[,arccos’ y =

in fact
Vy € ]-1,1[ : arccosy = < y = cosx
and
, 1
(arccosy)” = -
(cosx)
= inz > 0, on |0,
sinx_ismx o_nl] 7[)

V1 —cos?z - \/1—y2'
See figure 30

25

(arccos)

05

-05

=15
Figure 30 : cos and arccos
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Note

cos (arccosy) = y Yye[—1,]1]

arccos (cosz) = x VY €[0,7]

Arctangent function

P13 et
s x

x — f(x) =tanx =
cos
T

5 [, then f is bijective and therefore f~!

. . . . . ™
f is continuous, strictly increasing on ]—5,

exists, is continuous and strictly increasing and we have f (] —g, g D = ]—o00, +oo[ and
1. _r T
7 im0, ool _>] 272
y — f7!(y) = arctany

from which we have

arctany = x tanz =y
R < Tz
ye 2 2

Forthermore, the arctangente function is:
- Differentiable on R and

1
!/
Vy € R, (arctan) Yy = W,
in fact
Vy e R:arctany =x < y =tanz
and
, 1
(arctany) = -
(tanx)
B 1
1 +tan?z
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See figure

: (tan) /
—

/
’f
Ilf
f
Figure 31 : tan and arctan
Example 3.4.1 1)
tan 0 e]-2.2]
arctan0 = «a:a€|——, =
272
= tan (arctan0) = tan «
= 0=t e] u W[
=tana:a € |——, —
272
= a=0.
2)
. ™ .
lim arctany = —— and lim arctany = —.
y——00 Yy—00 2
Arccotangent function
f:]0,7[ — ]—00, +00]
coS T

r — f(z)=cotx =—
sinz

is continuous, strictly decreasing on ]0, 7|, then f is bijective and therefore f—1 exists
f ) y g ) b J )

is continuous and strictly decreasing and we have f (]0, 7[) = |—00, +00[ and

f~t:]—o0,+oo][ — 10,7
Y — f~Y(y) = arccot y

from which we have
ty = tr =
arccoty = x o cotz =y .
yeR O<zx<m
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Forthermore, the arccotangent function is:
- Differentiable on R and

1
Yy € R, (arccot)' y = T
in fact
Vy € R:arccoty =z < y =cotx
and
, 1
(arccoty) = ;
(cot a:?
T Tl-cot’z
1+ 92

- Class C*° on R.
See figure 32

Figure 32 : cot and arccot

1— z2

1- Show that: 2arctan z = arccos ———
1+ 22

2

Deduce a simplified expression of cos (4 arctan z) .

3

Solve the equation

1
arctan x + arctan4x = % — arctan 5

1- let’s as
™
a=arctanz &< r =tanz, o € ]—57 5{
and determine

cos (2arctan ) = cos 2a = 2cos? o — 1,
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hence
9 1 1
cos“ o = 5 = 5
1+ tan“zx 1+=x
where from
oy 2 1—a?
cos a—1+x2 R
and
2c¢ = arccos ——— = 2arctan .
1+ 22
2- Relationship
cosda = 2cos?2a—1
9 9 1— 22
= 2cos” [ arccos —— | —
1+ 22
1—22\?
— 9 S
1+ 22
B 2 (1 - m2)2 — (1 +:U2)2
N (1+22)?
_ - 622 +1
(1+a2)?
4 2
—6 1
cos (4arctanz) = %
(1+2?)

T
arctan x + arctan4xr = Z — arctan 5

E tan E[O.q
1 arcan5 Ik

the values of x sought will be such that

3- Like

0 < arctanz + arctan 4x <

NE

So by a formal calculation, let’s take the tangent of the two sides

tan (arctan ) + tan (arctan 4x)

tan (arctan x 4 arctan 4z
( * ) 1 — tan (arctan x) tan (arctan 4x)

T+ 4x T

1 —422 1 — 422
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t (TF) t t 1

t - t 1 B an 1 an [ arctan 5
an 1 arctan 5 = i
1+ tan ( ) tan | arctan 5

T
4
) 1
__ 5_2
1 3’
1 _
+5

Solution 3.4.2 Where from

5T 2 9 9

The equation which admits for roots: A = (15)* —4 x (=2) x 8 = (17)*.

1
T ==
~154+17 TR
= 16 = and
T9 = —2, rejected.

1
Only the solution x1 = 3 checks for double inequality 0 < arctan z + arctan 4z <

w1

3.4.2 Exponential function

Definition 3.4.3 The exponential function denoted exp is the only differentiable func-

tion on R, equal to its derivative and verifying: exp(0) = 1.
Properties

1. Vz € R:exp(z) > 0.

2. Vz,y e R:exp(z+y) =exp(z)exp (y).

3. Euler’s notation: We set exp () = e%; where e! = e ~ 2.718, whence Vz,y €
x

R:etV =e%Y e = —, ¥ =—, (e%)" = e"".
er ey

aQ

4. The exp function is strictly increasing on R.

et =eY s x=y.

5. Vz,y e R:
ef<e¥Y s a<y.

6. The function x — € is a bijection of R in R*.

Some reference limits:
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v 1
€ :17

1. lim e* =0, lime* = 400, lin%)
Tr—

Tr——0Q T—00 T

xT

2. lim < = 400, lim z"e® =0, for all n € N.
z—0x" T——00

3.4.3 Logarithm function

We call the natural logarithm function denoted In, the reciprocal function of the expo-

nential function, defined from |0, +oo[ on R such as
Ve>0:x=¢<y=Inuz.

Note: The graphs of the natural logarithm function and the exponential function are

symmetric with respect to the first bisector, i.e. the line of equation y = x, see figure

flx), _f'f.tl = x
,”/ fix) = Inx
T T P T T T =_‘{'

Figure 33 : e and Inx

Properties
1. In1=0,lne=1.
2. Vz € R:Ine® = x and Vx € |0, +00[ : €% = 7.
3. The function In is strictly increasing on |0, +00].
4. Vz,y €0,+o0[ :Inz =lhy <z =y.
5. Vz,y €]0,400[: In(zy) =Inz +Iny.

1
6. Vx,y €]0,400[: In— = —ln:lc;lng =lny —Inx.
x T
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7. Vx €0, 4+00[,¥n € N:Inz" =nlnz.

Some reference limits:

1 1
1. Iim Inx = —o00, lim Inz = 400, limw =1,
r—0+ T——+00 z—0 X
1
9. lim —F — 0, lim z"Inx =0, for all n € N.
z——+oo ™ T——00

3.4.4 Logarithm function of any base

Definition 3.4.4 Let a be a strictly positive real number different from 1, we call a

logarithm function with base a; the real function denoted log, and defined on |0, 400 by

f(2) = log, () = ),
where In is the natural logarithm.
For a = e, we find the special case of the natural logarithm function In, because
lne=1.
If a = 10, then the base 10 logarithm function is called the decimal logarithm function,
denoted log where In 10 ~ 2,302, it is used in chemistry.

We also have another logarithm often used in computer science, it is the logarithm
Inz

in base 2 where 1 = —.
in base 2 where logy & = 1 =

Properties Let a and b be two strictly positive real numbers different from 1, we

have:

1. log,1 =0, log,a =1, log:1 = —log, .

Inb
2. log,x = ha logy z, Vo > 0.

In particular for @ = e and b = 10, we have Inxz = In 10log .
3. Va,y €10, +00[ : log, x =log,y & = =y.

4. Vx,y € 10, +o0| : log, (xy) = log, x + log, y.

1
5. Vx,y € ]0,+o0] : log, <y> = —log, y, log, (;) = log, x —log, y.
6. Vx €]0,+00[,Vn € N: log, (") = nlog, x.

7. The log, function is strictly increasing on |0, +o00[ for a > 1 and strictly decreasing
on 0,400 for 0 < a < 1.
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3.4.5 Power function

Definition 3.4.5 Let a be a strictly positive real and different from 1 and x any real, the
function a to the power of x or the basic exponential function a is the function denoted
a® and defined by

a® = eaclna.

It is the reciprocal function of the log, function (base logarithm a).

Properties Let a and b be two strictly positive real numbers, and let = and y be

two arbitrary real numbers.

1. a® >0, lna” =zlna.
2.1 =1, =a%aY, a " = —, a¥ T = —.
3. (ab)" = a®b", (a®)¥ = a™.

4. The base exponential function a is strictly increasing on R for ¢ > 1 and strictly

decreasing on R for 0 < a < 1.

3.4.6 Hyperbolic functions and their inverses
Hyperbolic sine and cosine

Definition 3.4.6 The functions hyperbolic sine denoted sinh or sh and hyperbolic cosine

denoted cosh or ch are defined on R by

ch :R—J[l,+c0[, sh :R—R

ef+e* et —e T
r— —— r— ——

2 2

Remark 3.4.7 Any function f : I C R— — R decomposes uniquely into the sum of an

even function and of an odd function

wen = WA @S )

indeea, L@+ F(=2) [ @)= f(-2)

hyperbolic sine functions are respectively the even part and the odd part of the exponential

is even and 18 odd. The hyperbolic cosine and

function in this decomposition.
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Proposition 3.4.8 The functions ch and sh are differentiable on R, for all x € R

ch'(z) = sh(z), sh/(z) = ch(x).

Figure 34 : cosh and sinh

Hyperbolic tangent

Definition 3.4.9 The function hyperbolic tangent denoted tanh or th is defined on R

by
th: R —R
shx
r — thr=——
chx
— x—sthx
oo X 1]
..l.__
L 1 | | l 1 1
| 1 T 1 O ) I I
-4 -3 -2 -1 1 2 3
e e s e

Figure 35 : tanh

Proposition 3.4.10 The function th is odd, differentiable on R, and for all x € R

1
/. 2.
thxfl—thxf%.

Consequently, th is strictly increasing on R .
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Hyperbolic cotangent

Definition 3.4.11 The function hyperbolic cotangent denoted coth or coth is defined
on R*by
coth:R* —]|—o0,—1[U]1, +o0]
chz 1 er +e*

r —cotht=—=—=———
shr thx e*—e 7@

Proposition 3.4.12 The function coth is odd, differentiable on R*, and for all z € R*

-1
coth'z =1 — coth?z = 2
sh?x
¥ 4
y=cothx
1
I
' . -
-1 0 1
.r1
\ ,
Figure 36 : coth
Proposition 3.4.13 For allxz € R
1. chx 4 shx = €* 5. ch(xz —y) = chachy — shxshy
2. chx — shx =¢e™* 6. sh(x +y) = shxzchy + chxshy
3. ch?x — sh?z =1 7. sh(x —y) = shxchy — chzshy
4. ch(z +y) = chxchy + shxshy 8. th(x+y M
1+ th(z)th(y)
th(zx) —th
0. thio g @)~ Th(y)

1 — th(z)th(y)
Hyperbolic sine argument function

Proposition 3.4.14 The application (sinh) sh : R — R is continuous and strictly

increasing so admits a reciprocal function denoted argsinh or argsh : R — R,
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hence we have .
arg shy = x shx =
(yiRy >©<x€Ry>
Forthermore, the argsinh function is:
- Differentiable on R and
1

argsh) y = ————,

in fact
arg shy = x & y = sha
and
, 1
(argsh)'y = ;
(shx)
1
~ ch(x)
- 1
sh?(x)+1
B 1
y? 41
See Figure 37
.
(=h) -"II Y=z
llll e -
! S
' .____.-'
/e

(argsh)

Figure 37 : sh and argsh

Remark 3.4.15 Logarithmic expression of arg shy

Vy € R:argshy = In <y+\/y2+1).
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Indeed

Y (y,z) € R?, = arg shy < y = shx and chx = +V/sh2x +1 = V2 +1

and as

e = shx +chr =y + /y? +1
x:1n<y+\/y2—|—1>.
Hyperbolic cosine argument function

Proposition 3.4.16 The application (cosh) ch : [0, +oo] — [1,+0o0] is continuous and

strictly increasing so admits a reciprocal function denoted argcosh or argch : [1,+oo[ —

[0, +-00f,
argchy = N chx =y
y>1 x>0

Forthermore, the arg cosh function is:
- Differentiable on |1, +o00[ and

hence we have

1
argch) y =
(argch) y -
in fact
argchy = & y = chx
and
(argch)'y = !
Y (chzx)’
1
~ sh(z
) (z) .
ch? (z) — 1
1
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for y €]1,+o0[. See Figure 37

& -

_--"'/
2 / (argeh)

F
||l.
|

4 H ]

Figure 37 : ch and argch

Remark 3.4.17 Logarithmic expression of arg chy

Yy € [1,+o0[ : argchy = In <y + m) .

Indeed

YV (y,x) € [1,+00[x[0,+00[, = = argchy < y = chx and shx = +V/ch2z — 1 = V2 —1
and as

e’ = chx+shz=y+\y2—-1
x = ln(y+\/y2—1>.

Hyperbolic tangent argument function

Proposition 3.4.18 The application (tanh) th : R — |—1, 1] is continuous and strictly

increasing so admits a reciprocal function noted argtanh or argth : |]—1,1[ — R.

argthy = x N the =y
y €1, 1] zeR

Forthermore, the arg tanh function is :

hence have
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- Differentiable on |1, 1] and

1
!/
(argth)'y = .
in fact
argthy =z < y = the
and
(argth)'y = !
8 (tha)'

_ 1

1 —th2z

= 1 — y2 .

See Figure 38

Figure 38 : th and argth

Remark 3.4.19 Logarithmic expression of argthy

1.1
Yy € |-1,1[ : argthy = §ln 11_5
Indeed
V(y,z) € |-1,1[ xR, x = argthy < y=thz

eT4e T 2
<:>y: e

el — e~ €2x+1
:>y(62:c_|_1):€23:_1

:>€2‘T:71+y
1Y
=z =—In —l—y.

2 1—-y
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Hyperbolic cotangent argument function

Proposition 3.4.20 The application coth : R* — |—o0, —1[U]1, 00| is continuous and
strictly decreasing so admits a reciprocal function noted arg coth or argcth : |—oo, —1[U
J1, +00[ — R,

hence we have
argcothy =z N cothx =y
y € |]—00, —1[U]1, 00| x € R*
Forthermore, the arg coth function is:
- Differentiable on |—oo, —1[U]1, +-00[ and

1
(arg coth)'y = ;— "k
in fact
Yy € |—o0, —1[U]1, +o0[ : argcothy = x < y = cothx
and 1
argcoth)y = ———
(arg V'Y (coth z)’
_ 1
1 — coth?
B 1
=T

See Figure 31

Figure 39 : coth and argcoth
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Remark 3.4.21 Logarithmic expression of argcothy

1 1
Yy € |—00, —1[U]1, +00[ : argcothy = iln &1
y_

Indeed

e’ +e %

V(y,x) € |—o0, —1[U]1, +oo[ x R*, z = argcothy < y = cothz = pr—

e 4+ 1
T
<:>y(e2$—1):ezx+1
y+1

-

e

N 1?y+1
x=—=In .
2 y—1




