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Exercises

Go to : Solutions

Exercise 1 :
Determine the definition domain for each function f , g, f ◦ g and g ◦ f with :
1. f(x) = x2 − 4, g(x) =

√
x

2. f(x) =
√

x, g(x) = x − 1
x − 2

Go to : Solution to Exercise 1
Exercise 2 :
Determine the lower bound, the upper bound, the infimum, the supremum, the

maximum and the minimum for each set if they exist :

A = {x ∈ R : x2 < 2}, B =
{ 1

n
; n ∈ N∗

}
, C =

{ 1
n

+ (−1)n; n ∈ N∗
}

,

D =
{ 2n

2n − 1; n ∈ N∗
}

, E =
{

x + 1
x + 2; x ≤ −3

}
.

Go to : Solution to Exercise 2
Exercise 3 :
The same questions for the following sets :

X =
{

2xy

x2 + y2 ; x ∈ R∗, y ∈ R∗
}

, Y =
{

(−1)n

n
+ 2

n
; n ∈ N∗

}
.
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Go to : Solution to Exercise 3
Exercise 4 :
Using the characterization of the least upper bound and the greatest lower bound,

show that :
1. sup A = 3

2 and inf A = 1 for A =
{3n + 1

2n + 1 | n ∈ N
}

.

2. sup B = 2 and inf B = 0 for B =
{ 1

n
+ 1

n2 | n ∈ N∗
}

.
3. sup C = 1 and inf C = 0 for C = {e−n | n ∈ N}.
4. sup D = −1 and inf D = −2 for D =

{ 1
n2 − 2 | n ∈ N∗

}
.

Determine max A, min A, max B, min B, max C, min C, max D and min D if they
exist.

Go to : Solution to Exercise 4
Exercise 5 :

1. Show the following inequalities :
(a) |x| + |y| ≤ |x + y| + |x − y|, ∀x, y ∈ R.
(b) √

x + y ≤
√

x + √
y, ∀x, y ∈ R+.

(c)
∣∣∣√x − √

y
∣∣∣ ≤

√
|x − y|, ∀x, y ∈ R+.

2. Let [x] denote the integer part of x. Show that for all x, y ∈ R :
(a) x ≤ y ⇒ [x] ≤ [y].
(b) [x] + [y] ≤ [x + y] ≤ [x] + [y] + 1.

Go to : Solution to Exercise 5
Exercise 6. (It can be solved in Course) :

1. Prove that :
(a) The sum of a rational number and an irrational number is irrational.
(b)

√
2 /∈ Q.

(c) 0.336433643364 . . . ∈ Q.
2. Let a ∈ [1, +∞[. Simplify

x =
√

a + 2
√

a − 1 +
√

a − 2
√

a − 1.

3. Compute :

(a) A =
n∑

k=0

(
n

k

)
,

(b) B =
n∏

k=1

(
1 + 1

k

)
, n ∈ N∗.

Go to : Solution to Exercise 6

2



Solutions

Go back to : Exercises

Solution 1 :
Definition domains of the functions f , g, f ◦ g, and g ◦ f :

1. Df =] − ∞, +∞[
2. Dg = {x ∈ R : x ≥ 0} = [0, +∞[
3. Domain of the function f ◦ g :

x ∈ Df◦g ⇐⇒ x ∈ Dg and g(x) ∈ Df .

That is :
x ∈ [0, +∞[ and

√
x ∈] − ∞, +∞[ ⇐⇒ x ∈ [0, +∞[.

Hence,
Df◦g = [0, +∞[.

For all x ∈ Df◦g,
(f ◦ g)(x) = f(g(x)) = f(

√
x) = (

√
x)2 − 4 = x − 4.

4. Domain of the function g ◦ f :
x ∈ Dg◦f ⇐⇒ x ∈ Df and f(x) ∈ Dg.

That is :
x ∈] − ∞, +∞[ and x2 − 4 ∈ [0, +∞[.

Hence,
x ∈] − ∞, −2] ∪ [2, +∞[,

and therefore
Dg◦f =] − ∞, −2] ∪ [2, +∞[.

For all x ∈ Dg◦f ,

(g ◦ f)(x) = g(f(x)) = g(x2 − 4) =
√

x2 − 4.

Go back to : Exercise 1

Solution 2 :
Given sets :

A = {x ∈ R : x2 < 2},

B = {1/n : n ∈ N∗},

C = { 1/n + (−1)n : n ∈ N∗ },

D =
{ 2n

2n − 1 : n ∈ N∗
}

,

E =
{

x + 1
x + 2 : x ≤ −3

}
.
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Set A. Since x2 < 2 iff −
√

2 < x <
√

2, we have

A = (−
√

2,
√

2).

Hence inf A = −
√

2, sup A =
√

2 ; neither minimum nor maximum exist (endpoints
are not included).

Set B. B = {1, 1/2, 1/3, . . . }. The sequence decreases to 0. Thus

inf B = 0, sup B = 1,

with max B = 1 (attained at n = 1) and no minimum.

Set C. For even n, 1/n + (−1)n = 1 + 1/n (decreasing to 1). For odd n, 1/n +
(−1)n = −1+ 1/n (decreasing to −1). The largest value occurs at n = 2 and equals
3/2. The odd subsequence approaches −1 from above. Therefore

sup C = 3
2 (attained at n = 2), inf C = −1 (not attained).

So max C = 3/2 and min C does not exist.

Set D. The terms are 2, 4/3, 6/5, . . . and satisfy 2n

2n − 1 ↓ 1. Hence

sup D = 2 (attained at n = 1), inf D = 1 (limit, not attained).

Thus max D = 2 and there is no minimum.

Set E. Consider f(x) = x + 1
x + 2 for x ≤ −3. Since

f ′(x) = 1
(x + 2)2 > 0 for x ̸= −2,

f is increasing on (−∞, −2). Therefore on x ≤ −3 the image is(
lim

x→−∞
f(x), f(−3)

]
= (1, 2].

Hence inf E = 1 (not attained), sup E = 2 (attained at x = −3), so max E = 2 and
no minimum exists.

Go back to : Exercise 2

Solution 3 :
Let

X =
{

2xy

x2 + y2 : x ∈ R∗, y ∈ R∗
}

.
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(1) Lower bound. For any nonzero real numbers x and y we have

(x + y)2 ≥ 0 ⇐⇒ x2 + y2 + 2xy ≥ 0 ⇐⇒ 2xy

x2 + y2 ≥ −1.

Thus −1 is a lower bound of X. If we choose y = −x (with x ̸= 0) then

2x(−x)
x2 + (−x)2 = −2x2

2x2 = −1,

so −1 ∈ X. Therefore inf X = −1 and the infimum is attained ; −1 is a minimum
of X.

(2) Upper bound. For any nonzero real numbers x and y we have

(x − y)2 ≥ 0 ⇐⇒ x2 + y2 − 2xy ≥ 0 ⇐⇒ 2xy

x2 + y2 ≤ 1.

Thus 1 is an upper bound of X. If we choose y = x (with x ̸= 0) then

2xx

x2 + x2 = 2x2

2x2 = 1,

so 1 ∈ X. Therefore sup X = 1 and the supremum is attained ; 1 is a maximum of
X.

Hence the set X has minimum −1 and maximum 1.
Go back to : Exercise 3

Solution 4 :

1. For A =
{3n + 1

2n + 1 , n ∈ N
}

:

— inf A = 1 since 3n+1 ≥ 2n+1 ⇒ 3n + 1
2n + 1 ≥ 1 and equality holds for n = 0.

Thus min A = 1 = inf A.
— sup A = 3

2 because 3n + 1
2n + 1 ≤ 3

2 for all n, and for every ε > 0 there exists

nε ∈ N such that 3
2 − ε <

3nε + 1
2nε + 1. Hence sup A = 3

2, but 3
2 /∈ A (no

maximum).

2. For B =
{ 1

n
+ 1

n2 , n ∈ N∗
}

:

— sup B = 2, since 2 ≥ 1
n

+ 1
n2 for all n and equality holds for n = 1, so

max B = 2.
— inf B = 0 because all terms are positive and for every ε > 0 we can find n

large enough so that 1
n

+ 1
n2 < ε. Hence inf B = 0 (no minimum).

3. For C = {e−n, n ∈ N} :
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— sup C = 1, since 0 ≤ e−n ≤ 1 and equality holds for n = 0 (max C = 1).
— inf C = 0, as e−n > 0 and for any ε > 0 there exists n such that e−n < ε,

so inf C = 0 (no minimum).

4. For D =
{ 1

n2 − 2, n ∈ N∗
}

:

— sup D = −1, since 1
n2 − 2 ≤ −1 and equality holds for n = 1, so max D =

−1.
— inf D = −2, as 1

n2 − 2 > −2 for all n, and for large n, 1
n2 − 2 approaches

−2 from above. Hence inf D = −2 (no minimum).

Go back to : Exercise 4

Solution 5 :

1. For all x, y ∈ R, we have :
—

2|x| = |(x + y) + (x − y)| ⇒ 2|x| ≤ |x + y| + |x − y|
and

2|y| = |(x + y) + (y − x)| ⇒ 2|y| ≤ |x + y| + |x − y|.
Thus,

|x| + |y| ≤ |x + y| + |x − y|, ∀x, y ∈ R.

— For all x, y ≥ 0, we have :

x + y ≤ x + 2√
xy + y,

because 2√
xy ≥ 0. Hence

x + y ≤ (
√

x + √
y)2 ⇒

√
x + y ≤

√
x + √

y.

— For all x, y ≥ 0, we have

x = (x − y) + y and (x − y) + y ≤ |x − y| + y,

therefore √
x ≤

√
|x − y| + y.

Using (b), we get
√

x ≤
√

|x − y| + √
y ⇒

√
x − √

y ≤
√

|x − y|.

Similarly,
√

y ≤
√

|y − x| + x ⇒ √
y ≤

√
|x − y| +

√
x ⇒

√
x − √

y ≥ −
√

|x − y|.

Thus,
|
√

x − √
y| ≤

√
|x − y|.
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2. Let [x] denote the integer part of x. Show that for all x, y ∈ R :
— If x ≤ y, then [x] ≤ [x] ≤ y < [y] + 1, hence [x] ≤ [y] since [y] is the

greatest integer ≤ y and [x] is an integer.
— Since

[x] ≤ x < [x] + 1 and [y] ≤ y < [y] + 1,

we get
[x] + [y] ≤ x + y < [x] + [y] + 2.

As [x + y] is the greatest integer ≤ x + y, we have
[x] + [y] ≤ [x + y]. (1.5)

On the other hand, [x + y] + 1 is the smallest integer > x + y, so
[x + y] + 1 ≤ [x] + [y] + 2 ⇒ [x + y] ≤ [x] + [y] + 1. (1.6)

From (1.5) and (1.6) we conclude :
[x] + [y] ≤ [x + y] ≤ [x] + [y] + 1.

Go back to : Exercise 5

Solution 6 :

1.(a) Let x ∈ Q, y /∈ Q. Assume by contradiction that z = x + y ∈ Q, then
y = z−x ∈ Q, contradiction. Hence, the sum of a rational and an irrational
number is irrational.

(b) Suppose, by contradiction, that
√

2 ∈ Q. Then there exist p, q ∈ Z,
gcd(p, q) = 1, such that

√
2 = p

q
, hence

p2 = 2q2.

Thus 2 divides p2, so 2 divides p. Let p = 2k for some k ∈ Z, then
4k2 = 2q2 ⇒ 2k2 = q2,

so 2 divides q2, hence 2 divides q. This contradicts gcd(p, q) = 1. Therefore√
2 /∈ Q.

(c) Let x = 0.336433643364 . . .. Then 104x = 3364.33643364 . . ., so

104x − x = 9999x = 3364 ⇒ x = 3364
9999 ∈ Q.

2. Let a ∈ [1, +∞[. Simplify

x =
√

a + 2
√

a − 1 +
√

a − 2
√

a − 1.

We note that
x2 = 2a + 2

√
a2 − (a − 1) = 2a + 2

√
a − 1.

Hence x =
√

2(a + 1). (This can also be verified algebraically.)
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3. Compute :

(a) A =
n∑

k=0

(
n

k

)
= 2n.

By the binomial theorem (Binome of Newton),

(1 + 1)n =
n∑

k=0

(
n

k

)
1n−k1k =

n∑
k=0

(
n

k

)
.

Thus
A = 2n.

4. B =
n∏

k=1

(
1 + 1

k

)
= n + 1. Write each factor as a single fraction :

1 + 1
k

= k + 1
k

,

so
B =

n∏
k=1

k + 1
k

= 2
1 · 3

2 · 4
3 · · · n + 1

n
.

All intermediate terms cancel (telescoping product), leaving

B = n + 1.

Go back to : Exercise 6

Good Luck ! ■
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