
Model answer key for exercise setnNo.3, Maths1

Solution to exercise 1:

a 1. For every x 6= 0, we have : ∣∣∣∣x sin 1x
∣∣∣∣ = |x| ∣∣∣∣sin 1x

∣∣∣∣ ≤ |x|
Lett ε > 0, so there exists η = ε such as

|x| < η ⇒
∣∣∣∣x sin 1x

∣∣∣∣ ≤ |x| < ε.

2. If M > 0, we choose η =
1√
M
such as if

0 < |x− 1| < η ⇒ 1

(x− 1)2
> M.

3. For all |x| < 1, we have :|x (x2 + 1)| ≤ |x3|+ |x| ≤ |x|+ |x| = 2 |x| .

Let ε > 0, if we take η = inf
{
1,
ε

2

}
, so

|x| < η ⇒
∣∣x (x2 + 1)∣∣ < ε

4. Since x → 1we can assume that |x− 1| < 1 ⇒ 0 < x < 2 therefore |x+ 2| > 2,on

the other hand if M > 0 we choose η = inf
{
1,
2

M

}
such as if |x− 1| < η, we have :

|f(x)| > 2

|x− 1| > M.

5. Let ε > 0, we find f(x) =
1

x2
< ε for x2 >

1

ε
that’s to say |x| > 1√

ε
, so it is enough

to take
M =

1√
ε
.

6. Let ε > 0, we have :∣∣∣∣∣∣∣∣
2

1 + exp

{
−1
x

} − 2
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
2

1 + exp

{
1

x

}
∣∣∣∣∣∣∣∣ < ε⇒ exp

{
1

x

}
>
2

ε
− 1.

If 0 < ε < 2, we have 0 < x <
1

ln

(
2

ε
− 1
) , so it is enough to take

η =
1

ln

(
2

ε
− 1
) DrL.Derbal.
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If ε ≥ 2 any value of η will satisfy the requirement (because . . . 2

1 + exp

{
1

x

} < 2)

7. We have for all x 6= 1 :

2x4 − 6x3 + x2 + 3

x− 1 =
(x− 1) (2x3 − 4x2 − 3x− 3)

x− 1
= 2x3 − 4x2 − 3x− 3

Since x→ 1, we can assume that |x− 1| < 1, therefore 0 < x < 2, Consequently∣∣∣∣2x4 − 6x3 + x2 + 3

x− 1 + 8

∣∣∣∣ =
∣∣2x3 − 4x2 − 3x+ 5∣∣ = |x− 1| ∣∣2x2 − 2x− 5∣∣

≤ |x− 1|
(
2
∣∣x2∣∣+ 2 |x|+ 5) < 17 |x− 1|

Lett ε ≥ 0, then there exists η = inf
{
1,

ε

17

}
such that

|x− 1| < η ⇒
∣∣∣∣2x4 − 6x3 + x2 + 3

x− 1 + 8

∣∣∣∣ < ε.

b 1. lim
x→1

1

1− x −
2

1− x2 = I.F

1. lim
x→0

1

1− x−
2

(1− x) (1 + x)
= lim

x→1

(1 + x)− 2
(1− x) (1 + x)

= lim
x→1

x− 1
(1− x) (1 + x)

= lim
x→1

1

1 + x
=

1

2
2. We have

xn − an = (x− a)
(
xn−1 + axn−2 + ...+ an−2x+ an−1

)
so

lim
x→a

xn − an
x− a = an−1 + an−1 + ...+ an−1 + an−1 = nan−1

3. We have

lim
x→0

sinmx

sinnx
=
m

n
lim
x→0

sinmx

mx
sinnx

nx

=
m

n

4. We have

(
1 +

1

x

)x
= exp

{
x ln

(
1 +

1

x

)}
= exp


ln

(
1 +

1

x

)
1

x


So

lim
x→+∞

(
1 +

1

x

)x
= lim

y→0
exp

{
ln (1 + y)

y

}
= e (lim

y→0

ln (1 + y)

y
= 1) Dr L.Derbal
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5. We have

(
x− 2
x+ 2

)x
=

(
1− 4

x+ 2

)x
=

((
1− 1

y

)y)4
(
1− 1

y

)2 ,

or
1

y
=

4

x+ 2
,then

lim
x→+∞

(
x− 2
x+ 2

)x
= lim

y→+∞

((
1− 1

y

)y)4
(
1− 1

y

)2 = e−4

6. We have
ax − 1
x

=
(exp {x ln a} − 1)

x
Let us set y = x ln a, we find

ax − 1
x

=
ey − 1
y

ln a⇒ lim
x→0

(
ax − 1
x

)
= ln alim

x→0

(
ey − 1
y

)
= ln a

7. We have

sin
(√

x+ 1
)
− sin

(√
x
)
= 2 sin

(√
x+ 1−

√
x

2

)
cos

√
x+ 1 +

√
x

2
,

then

0 ≤
∣∣∣sin(√x+ 1)− sin (√x)∣∣∣ ≤ 2 ∣∣∣∣∣sin

(
1

2
(√

x+ 1 +
√
x
))∣∣∣∣∣ ≤ 1√

x+ 1 +
√
x

(because
1√

x+ 1 +
√
x
is verry small). Or

lim
x→+∞

1√
x+ 1 +

√
x
= 0

we conclude that
lim

x→+∞

(
sin
(√

x+ 1
)
− sin

(√
x
))
= 0

8.
1

x
− 1 <

[
1

x

]
≤ 1

x
⇒ 1− x < x

[
1

x

]
≤ 1

⇒ lim
x→0

(1− x) < lim
x→0

x

[
1

x

]
≤ 1

⇒ 1 < lim
x→0

x

[
1

x

]
≤ 1⇒ lim

x→0
x

[
1

x

]
= 1
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c 1. We know that tan 2x ∼ 2x In the neighborhood of 0, therefore lim
x→0

tan 2x

x
= lim
x→0

2x

x
= 2.

2. We know that 1 − cosx ∼ 1

2
x2, 1 − cos 2x ∼ 1

2
(2x)2, and tanx ∼ x in the

neighborhood of 0, therefore

lim
x→0

2− cosx− cos 2x
tan2 x

= lim
x→0

1

2
x2 +

1

2
(2x)2

x2
= lim
x→0

5

2
x2

x2
=
5

2
.

3. ln (1 + x) ∼ x, therefore

ln [1 + ln 1 + x] ∼ ln (1 + x)

and we have

lnx. ln [1 + ln 1 + x] ∼ lnx. ln (1 + x) = (x lnx) .
ln (1 + x)

x

⇒ lim
x→0+

lnx. ln [1 + ln 1 + x] = lim
x→0+

[
(x lnx) .

ln (1 + x)

x

]
= 0.

Corrigé d’exercice 2:

a The function is clearly continuous on ]1,+∞[ and on ]−∞, 1[. For f it is necessary and
suffi cient that f has a right-hand limit and a left-hand limit at 1, and that these limits
are equal. But we have . . .

lim
x→1+

f(x) = a sin(
π

2
) = a but lim

x→1−
f(x) = a2

The function f is therefore continuous at 1 if and only if a2 = a , that is, if and only
if a = 1 or a = 0.

b We do the same thing, but this time we need to study the right-hand and left-hand
continuity at 0 and at 1, the function g being clearly continuous on ]−∞, 0[, on]0, 1[
and on ]1,+∞[. On the one hand, we have

lim
x→0−

g(x) = 1 and lim
x→0+

g(x) = α + β.

On the other hand, we have

lim
x→1−

g(x) = αe−1 + βe1 + γ
(
e1 − e−1

)
and lim

x→1+
g(x) = e1.

The function g is continuous if and only if the triplet (α, β, γ) satisfies the following
system: {

α + β = 1
αe−1 + βe1 + γ (e1 − e−1) = e1

We solve this system, for example by removing e−1L1from L2. We find the equivalent
system:{

α + β = 1
β (e1 − e−1) + γ (e1 − e−1) = e1 − e−1. DrL.Derbal
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We can simplify by e1 − e−1 in the second equation and we find{
α + β = 1
β + γ = 1.

⇔


α = γ
β = 1− γ
γ ∈ R

The set of triplets for which the function g is continuous is therefore given by

{(0, 1, 0) + γ (1,−1, 1) : γ ∈ R}

Solution to exercise 3:
Factor the denominator:

x3 + 1 = (x+ 1)
(
x2 − x+ 1

)
,

for x 6= −1, we can simplify:

f(x) =
x+ 1

(x+ 1) (x2 − x+ 1) =
1

x2 − x+ 1
Compute the limit as x→ −1

lim
x→−1

f(x) = lim
x→−1

1

x2 − x+ 1 =
1

(−1)2 − (−1) + 1
=
1

3
.

Since the limit exists and equals
1

3
, f can be extended continuously by defining

f̃(x) =


x+ 1

x3 + 1
, x 6= −1

1

3
, x = −1

The value taken at x = −1 by the continuous extension is 1
3

Solution to exercise 4:
1. f(x) = sin

1

x
: The domain of definition is R∗, f is the composition of two continuous

functions on R∗,:
h : R∗ → R

x→ y =
1

x

and
g : R→ R

y → sin y

therefore f is continuous on R∗.
Let’s show that f has no limit as x → 0. Let(xn) and (x′n), n ∈ N∗ be the two sequences
defined by

xn =
1

nπ
and x′n =

1

2nπ +
π

2
We have

lim
n→+∞

xn = lim
n→+∞

x′n = 0.

Moreover,

f (xn) = 0 and f (x′n) = 1 6= 0 ∀n ∈ N∗ ⇒ lim
n→+∞

f (xn) = 0 6= 1 = lim
n→+∞

f (x′n) Dr L.Derbal

7



Thus, we have found two sequences (xn) and (x′n) that converge to the same limit, such that
the limits of f (xn) and f (x′n) are different. Therefore, f does not have a limit as x → 0,
and it does not admit a continuous extension at 0.
2. f(x) = x sin

1

x
: The domain of definition is R∗, f is continuous on R∗ (composed of

continuous functions). On the other hand,

lim
x→0+

x sin
1

x
= lim

x→0−
x sin

1

x
= 0

Therefore, f admits a continuous extension at x = 0. If f̃ is the extended function, we have

f̃(x) =

{
x sin

1

x
if x 6= 0

0 if x = 0

3. f(x) =
x

|x| : f is defined and continuous on R
∗. Moreover, we have

lim
x→0+

f(x) = 1 6= lim
x→0−

f(x) = −1

Therefore, f does not admit a continuous extension at x = 0.

4. f(x) =
x sinx

1− cosx : f is defined on R−{2kπ}, where k ∈ Z , and continuous on its domain
of definition (as the quotient of two continuous functions with 1− cosx 6= 0). Consequently,

lim
x→2kπ

x sinx

1− cosx = lim
x→2kπ

2x sin
x

2
cos

x

2

2 sin
x

2
sin

x

2

= lim
x→2kπ

x cos
x

2

sin
x

2

.

We distinguish two cases:
Case1: k = 0

lim
x→0+

x cos
x

2

sin
x

2

= lim
x→0−

x cos
x

2

sin
x

2

= 2.

Therefore, f admits a continuous extension at x = 0.
Case 2: k 6= 0, k ∈ Z

lim
x→(2kπ)+

x cos
x

2

sin
x

2

=

{
+∞ if k > 0
−∞ if k < 0

et

lim
x→(2kπ)−

x cos
x

2

sin
x

2

=

{
−∞ if k > 0
+∞ if k < 0

Thus, f does not admit a continuous extension at x = 2kπ.
Solution to exercise 5:

1 Existence and uniqueness of a solution on
[
π

2
,
3π

2

]
. Dr L.Derbal
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a) The function f (x) = x sinx+cos x is continuous on all of R and in particular on
[
π

2
,
3π

2

]
.

Evaluate f at the endpoints

f
(π
2

)
=

π

2
sin
(π
2

)
+ cos

(π
2

)
=
π

2
> 0

f

(
3π

2

)
=

3π

2
sin

(
3π

2

)
+ cos

(
3π

2

)
= −3π

2
< 0.

Since f changes sign on the interval, the Intermediate Value Theorem guarantees that there

exists at least one solution α ∈
]
π

2
,
3π

2

[
.

b) Prove that the solution is unique. Compute the derivative:

f ′ (x) = x cosx < 0

On the interval
]
π

2
,
3π

2

[
.Therefore, f is strictly decreasing. Thus, the solution is unique.

2 Prove that
5π

6
< α < π.

We have f
(
5π

6

)
=
5π

6

1

2
−
√
3

2
= 0.443 > 0 and f (π) = −1 < 0.

Since f is strictly decreasing, it crosses zero exactly once, and it must do so between
these two values.

Thus
5π

6
< α < π.

Solution of exercise 6:
Define the function g : [a, b]→ R by g (x) = f (x)− pf(a) + qf(b)

p+ q
We want to show that g(c) = 0 for some c ∈ [a, b]. Infact

g (a) = f (a)− pf(a) + qf(b)

p+ q
=
q [f(a)− f(b)]

p+ q
=

q

p+ q
[f(a)− f(b)]

g (b) = f (b)− pf(a) + qf(b)

p+ q
=
p [f(b)− f(a)]

p+ q
= − p

p+ q
[f(a)− f(b)]

So g (a) and g (b) have opposite signs (or at least one is zero).
• If f(a) = f(b), then g(a) = g(b)and any c ∈ [a, b] verified.
• Otherwise, g(a) < g(b) Since f is continuous on [a, b], g is also continuous. By the
Intermediate Value Theorem, there exists c ∈ [a, b] such that

g(c) = 0 ⇒ f (c) =
pf(a) + qf(b)

p+ q
⇒ (p+ q) f (c) = pf(a) + qf(b)

Solution to exercise 7: a) The function is 2π-periodic and differentiable on R. For every
a ∈ R, we have f(a) = f(a+ 2π), and Rolle’s theorem shows the existence of a real number
c ∈ ]a, a+ 2π[such as f ′ (c) = 0. Dr L.Derbal
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b) Apply MVT to f (t) = arctan t on [x, 2x] :

• f ′ (t) = 1

1 + t2
• By MVT, there exists c ∈ ]x, 2x[ such that:

arctan 2x− arctanx = f ′ (c) (2x− x) = x

1 + c2
, for some c ∈ ]x, 2x[

• Since x < c < 2x, we have x2 + 1 < c2 + 1 < 4x2 + 1

• Taking reciprocals (inequality reverses because the function t→ 1

t
is decreasing for t > 0):

1

1 + 4x2
<

1

1 + c2
<

1

1 + x2

Multiply through by x > 0
x

1 + 4x2
<

x

1 + c2
<

x

1 + x2

But arctan 2x− arctanx = x

1 + c2
, so finally we get:

x

1 + 4x2
< arctan 2x− arctanx < x

1 + x2

Solution of Exercise8.
Let us compute, with the aim of applying Leibniz’s formula, the successive derivatives of the
functions
u and v defined by u (x) = x2 and v (x) = ln x.We have u′(x) = 2x, u′′(x) = 2 , then u(k) = 0
for all k ≥ 3. We also have, for all n ≥ 1, v(n)(x) = (−1)n−1 (n− 1)!x−n (this can be shown
by induction). According to Leibniz’s formula, we have

f ′ (x) = C01x
2 1

x
+ C112x lnx = x+ 2x lnx.

f ′′ (x) = C02x
2

(
−1
x2

)
+ C122x

1

x
+ C222 lnx = 2 ln x+ 3.

Then, for n ≥ 3,

f (n) (x) = C0nx
2
(
(−1)n−1 (n− 1)!x−n

)
+ C1n2x

(
(−1)n−2 (n− 2)!x−n+1

)
+ C2n2

(
(−1)n−3 (n− 3)!x−n+2

)
= (−1)n−1 (n− 1)!x−n+2 + (−1)n−2 2n (n− 2)!x−n+2 + (−1)n−3 n (n− 1) (n− 3)!x−n+2

= (−1)n−1 x−n+2 ((n− 1)!− 2n (n− 2)! + n (n− 1) (n− 3)!)

=
(−1)n−1 (n− 1)!

xn−2

(
1− 2n

n− 1 +
n

n− 2

)
=

(−1)n−1 (n− 1)!
xn−2

2

(n− 1) (n− 2)

=
2 (−1)n−1 (n− 3)!

xn−2
.

Solution of Exercise9. a) chx+shx =
1

shx
− 1

chx
=
chx− shx
chxshx

Dr

L.Derbal
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Knowing that

chx+ shx = ex, chx− shx = e−x and chxshx =
1

2
sh2x =

1

2

e2x − e−2x
2

After substituting into the equation we obtain:

ex =
4e−x

e2x − e−2x ⇔ ex
(
e2x − e−2x

)
= 4e−x ⇔ e2x

(
e2x − e−2x

)
= 4

⇔ e4x − 1 = 4⇔ e4x = 5, hence x =
ln 5

4

b) The function Argchx being defined on [1,+∞[, the variable x must be ≥ 1. The system
is equivalent to:{

3 lnx = 2 ln chy
Argchx = 2y

⇔
{
lnx3 = ln ch2y
Argchx = 2y

⇔
{
x3 = ch2y
x = ch2y

Use the identity:

ch2y = 2ch2y − 1⇔ ch2y + 1

2
= ch2y ⇔ x+ 1

2
= ch2y,

thus

x3 =
x+ 1

2
⇔ 2x3 − x− 1 = 0⇔ (x− 1)

(
2x2 + 2x+ 1

)
= 0

⇒ x = 1 (2x2 + 2x+ 1 6= 0 because the discriminant is negative)

Hence the only solution of the system: x = 1and y = 0. Dr
L.Derbal
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