
Chapter 4

Internal composition laws

Definition 4.0.19 Let E be a set. An internal composition law (ICL) on E is a map

∗ : E × E → E

(a, b) → a ∗ b,

and we say that a ∗ b is the composite of a and b for the law ∗. A set E provided with

an internal composition law constitutes an algebraic structure and denoted (E, ∗).

Example 4.0.20 1. The addition defined by (a, b) → a + b is an internal composition

law in N, Z, Q, R and C.
2. The multiplication defined by (a, b)→ a× b is an internal composition law in N,

Z, Q, R and C.
3. The composition defined by (f, g)→f ◦ g is an internal composition law on the

sets of applications from E to E.

4. (a, b)→ a− b isnt an internal composition law in N.

Definition 4.0.21 (Usual properties of internal laws). Let ∗ be an internal law on a
set E. We say that

• The law ∗ is commutative if

∀a, b ∈ E : a ∗ b = b ∗ a.

• The law ∗ is said to be associative if

∀a, b, c ∈ E : a ∗ (b ∗ c) = (a ∗ b) ∗ c.
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• The law ∗ admits a neutral element e ∈ E if

∀a ∈ E : a ∗ e = e ∗ a = a.

• An element à ∈ E is the symmetric of a in E if

a ∗ à = e = à ∗ a.

à is the inverse of a and is denoted a−1for the law ×, (à is the opposite of a and is
denoted −a for the law +).

Example 4.0.22 In R−
{

1

2

}
we define the internal law ∗ by :

x ∗ y = x+ y − 2xy.

1. Closure (internal law): In fact, let x, y ∈ R−
{

1

2

}
, let’s show that x ∗ y ∈

R−
{

1

2

}
,

x ∗ y =
1

2
⇔ x+ y − 2xy =

1

2

⇔ x (1− 2y)− 1

2
(1− 2y) = 0

⇔ (1− 2y)

(
x− 1

2

)
= 0

⇔
(
y − 1

2

)(
x− 1

2

)
= 0

⇔ y =
1

2
or x =

1

2
.

Hence x, y ∈ R−
{

1

2

}
and then ∗ is an internal law.

2. Commutativity : Let x, y ∈ R−
{

1

2

}
, we have

x ∗ y = x+ y − 2xy = y + x− 2yx = y ∗ x,

so the law ∗ is commutative.
3. Associativity :

(x ∗ y) ∗ z = (x+ y − 2xy) ∗ z = (x+ y − 2xy) + z − 2(x+ y − 2xy)z

= x+ y + z − 2xy − 2xz − 2yz + 4xyz

= x+ (y + z − 2yz)− 2x(y + z − 2yz)

= x+ (y + z − 2yz)− 2x(y + z − 2yz)

= x+ (y ∗ z)− 2x(y ∗ z) = x ∗ (y ∗ z),
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so the law ∗ is associative.
4. Neutral element : Let e ∈ R−

{
1

2

}
, such that x ∗ e = e ∗ x = x, then

x+ e− 2xe = e+ x− 2ex = x⇔ e(1− 2x) = 0⇔ e = 0 ∈ R−
{

1

2

}
.

Thus, the law ∗ admits as neutral element the element e = 0.

5. Symmetric element (Inverse) : Let x ∈ R−
{

1

2

}
, such that x∗ x̀ = x̀∗x = e,

then

x+ x̀− 2xx̀ = 0⇔ x̀(1− 2x) = −x⇔ x̀ =
x

2x− 1
,

Therefore, the symmetric element of x is

x̀ =
x

2x− 1
, for all x ∈ R−

{
1

2

}
.

Let’s show that

x̀ ∈ R−
{

1

2

}
.

Indeed, we must check:

x̀ =
x

2x− 1
6= 1

2

Assume
x

2x− 1
=

1

2
⇔ 2x = 2x− 1⇔ −1 = 0.

Impossible, hence. x̀ ∈ R−
{

1

2

}
.

Definition 4.0.23 Let G be a set with two internal laws of composition, denoted ∆ and

∗ law is said to be distributive with respect to ∆ if ∀x, y, z ∈ G :

x ∗ (y∆z) = (x ∗ y)∆(x ∗ z)

and

(y∆z) ∗ x = (y ∗ x)∆(z ∗ x).

4.1 Group, Subgroups

Definition 4.1.1 Let G be a nonempty set with an internal composition law

∗ : G×G→ G

The pair (G, ∗) is called a group if the following conditions are satisfied :
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(1) ∗ is associative.
(2) ∗ admits a neutral element(identity elements) e.
(3) Each element of G admits a symmetric (inverse) element with respect to ∗.

If, moreover, the law ∗ is commutative, then the group is said to be commutative or
abelian, (named after the mathematician Abel).

Proposition 4.1.2 • The neutral element of any commutative group is unique.
• Let (G, ∗) be a commutative group. For each g ∈ G, the symmetric of g (denoted

g′ is unique.

Proof. • Suppose e and θ are any neutral elements of a commutative group (G, ∗)
Then

e = e ∗ θ (θ is an neutral element )

= θ ∗ e ( ∗ is commutative)

= θ (e is an neutral element )

Since e and θ are arbitrary neutral elements of (G, ∗), this implies that all neutral
elements are equal to each other, so the neutral element is unique (there is only one of

them).

• Suppose g′ and h are any symmetric of g. Then

g′ = g′ ∗ e (e is an neutral element )

= g′ ∗ (g ∗ h) (h is a symmetric of g)

=
(
g′ ∗ g

)
∗ h ( ∗ is associative )

=
(
g ∗ g′

)
∗ h ( ∗ is commutative )

= e ∗ h (g′ is a symmetric of g)

= h (e is an neutral element )

Therefore, all symmetric of g are equal, so the symmetric is unique.

Example 4.1.3 (1) (Z,+) is a commutative group.

(2) (R,×) is not a group because 0 does not admit a symmetric element.

(3) (R∗,×) is a commutative group.

Definition 4.1.4 Let (G, ∗) be a group. A part H ⊂ G (non-empty) is a subgroup of G

if, the restriction of the operation ∗ to H gives it the group structure.
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Proposition 4.1.5 Let H be a non-empty part of the group G. Then, H is a subgroup

of G if, and only if

(i) for all a, b ∈ H, we have a ∗ b ∈ H;
(ii) for all a ∈ H, we have a′ ∈ H, where a′ is the symmetry of a.

Example 4.1.6 (R∗+,×) is a subgroup of (R∗,×). Indeed

• If x, y ∈ R∗+ then x× y ∈ R∗+;
• If x ∈ R∗+ then x′ = x−1 =

1

x
∈ R∗+.

Example 4.1.7 We set 2Z = {2z : z ∈ Z}, (2Z,+) is a subgroup of Z. In fact:

• If x, y ∈ 2Z, there exists x1, y1 ∈ Z such that x = 2x1 and y = 2y1, then

x+ y = 2x1 + 2y1 = 2(x1 + y1) ∈ 2Z,

• If x ∈ 2Z, there exists x1 ∈ Z such that x = 2x1 then

x′ = −x = −2x1 = 2(−x1) ∈ 2Z.

Proposition 4.1.8 If H is a subgroup of (G, ∗) then the neutral element e ∈ H.

Exercise 4.1.9 We define the internal composition law ∗ by:

∀x, y ∈ R, x ∗ y = xy +
(
x2 − 1

) (
y2 − 1

)
1. Show that ∗ is commutative, non-associative, and that 1 is neutral element.

2. We define the internal composition law ∗ on R+∗ by:

∀x, y ∈ R+∗, x ∗ y =
√
x2 + y2

Show that ∗ is commutative, associative, and that 0 is neutral element. Show that no

element of R+∗ has a symmetric with respect to ∗.

Solution 4.1.10 1.

x ∗ y = xy +
(
x2 − 1

) (
y2 − 1

)
= yx+

(
y2 − 1

) (
x2 − 1

)
= y ∗ x.

The law is commutative.

To show that the law is not associative, it is suffi cient to find x, y and z such that:

x ∗ (y ∗ z) 6= (x ∗ y) ∗ z.
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Take, for example : x = 0, y = 2 and z = 3,

x ∗ (y ∗ z) = 0 ∗ (2 ∗ 3) = 0 ∗
(
2× 3 +

(
22 − 1

) (
32 − 1

))
= 0 ∗ (6 + 3× 8) = 0 ∗ 30

= 0 + (−1) (900− 1) = −899.

(x ∗ y) ∗ z = (0 ∗ 2) ∗ 3 = (0 + (−1) (3)) ∗ 3

= −3 ∗ 3 = −3× 3 +
(

(−3)2 − 1
) (

32 − 1
)

= −9 + 8× 8 = 55.

The law ∗ is not associative.

1 ∗ x = x+ (1− 1)
(
x2 − 1

)
= x.

Moreover, since the law is commutative 1 ∗ x = x ∗ 1.

We have 1 ∗ x = x ∗ 1 = x, 1 is the neutral element.

2.∀x, y ∈ R+∗

x ∗ y =
√
x2 + y2 =

√
y2 + x2 = y ∗ x.

The law ∗ is commutative.

(x ∗ y) ∗ z =
√
x2 + y2 ∗ z =

√(√
x2 + y2

)2
+ z2 =

√
x2 + y2 + z2.

x ∗ (y ∗ z) = x ∗
√
y2 + z2 =

√
x2 +

(√
y2 + z2

)2
=
√
x2 + y2 + z2.

The law ∗ is associative.

0 ∗ x =
√

02 + x2 =
√
x2 = |x| = x because x ≥ 0

As ∗ is commutative
0 ∗ x = x ∗ 0 = x

0 is the neutral element.

Suppose that x admits a symmetric y

x ∗ y = 0⇔
√
x2 + y2 = 0⇔ x2 + y2 = 0⇔ x = y = 0

However, if x > 0 and y > 0 then x ∗ y = 0 is impossible.

Therefore, for any x > 0, x does not have a symmetric element with respect to ∗.
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4.2 Ring Structure

Definition 4.2.1 Let A be a set with two internal composition laws that we will denote
∗ and ∆. (A, ∗,∆) is said to be a ring if the following conditions are met:

1) (A, ∗) is a commutative group.
2) The ∆ law is associative.

3) The ∆ law is distributive in relation to the ∗ law, i.e :

∀a ∈ A,∀b ∈ A,∀c ∈ A : (a ∗ b) ∆c = a∆c ∗ b∆c.

and

c∆ (a ∗ b) = c∆a ∗ c∆b.

If the ∆ law is commutative, the ring (A, ∗,∆) is said to be commutative. If the ∆

law admits a neutral element, we say that the ring (A, ∗,∆) is unitary.

Example 4.2.2 (Z,+,×) is a commutative and unitary ring.

Definition 4.2.3 If (A, ∗,∆) is a ring and B is a part of A, we say that B is a subring

of A if, provided with the laws induced by A, is itself a ring, i.e. (B, ∗,∆) is a ring.

In the following, A will denote the ring (A,+,×) with 0 the neutral element of +

and if it is unitary, 1 would be its unit.

Proposition 4.2.4 (characterization of the subrings). A part B of ring A is a subring

of A if and only if:

(i) for all a, b ∈ B, a− b ∈ B
(ii) for all a, b ∈ B, a× b ∈ B.

Example 4.2.5 The set 2Z = {2z : z ∈ Z}is a subring of the ring , (Z,+,×). In fact,

let x, y ∈ 2Z, there exists n,m ∈ Z, such that x = 2n and y = 2m, and we have

x− y = 2(n−m) ∈ 2Z and x× y = 2(2nm) ∈ 2Z

4.3 Structure of a field (body)

Definition 4.3.1 Let K be a set with two internal composition laws always denoted ∗
and ∆. (K, ∗,∆) is said to be a field if the following conditions are met:

1) (K, ∗,∆) is a ring.

2) (K − {e},∆) is a group, where e is the neutral element of ∗.
If ∆ is commutative, we say that (K, ∗,∆) is a commutative field.
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Example 4.3.2 (R,+,×) is a commutative field (body).

Definition 4.3.3 If K is a field and H a non-empty part of K then, H is said to be

a subfield of K if the restrictions of the two operations of K give H the structure of a

field.

The following result characterizes any subfield H of a given field :

Proposition 4.3.4 If H is a non-empty part of a field K then, H is a subfield of K if,

and only if,

(1) a ∈ H and b ∈ H ⇒ a− b ∈ H,
(2) a ∈ H and b ∈ H − {0} ⇒ a.b−1 ∈ H.

Example 4.3.5 • The set (R,+,×) of real numbers is a subfield of the field (C,+,×).

• The set (Q,+,×) of rationals is a subfield of the field (R,+,×) and therefore of

(C,+,×).


