

Chapter 4

Internal composition laws

Definition 4.0.19 Let E be a set. An internal composition law (ICL) on E is a map

$$\begin{aligned} * : E \times E &\rightarrow E \\ (a, b) &\rightarrow a * b, \end{aligned}$$

and we say that $a * b$ is the composite of a and b for the law $*$. A set E provided with an internal composition law constitutes an algebraic structure and denoted $(E, *)$.

Example 4.0.20 1. The addition defined by $(a, b) \rightarrow a + b$ is an internal composition law in \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} .

2. The multiplication defined by $(a, b) \rightarrow a \times b$ is an internal composition law in \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} .

3. The composition defined by $(f, g) \rightarrow f \circ g$ is an internal composition law on the sets of applications from E to E .

4. $(a, b) \rightarrow a - b$ isn't an internal composition law in \mathbb{N} .

Definition 4.0.21 (Usual properties of internal laws). Let $*$ be an internal law on a set E . We say that

- The law $*$ is commutative if

$$\forall a, b \in E : a * b = b * a.$$

- The law $*$ is said to be associative if

$$\forall a, b, c \in E : a * (b * c) = (a * b) * c.$$

- The law $*$ admits a neutral element $e \in E$ if

$$\forall a \in E : a * e = e * a = a.$$

- An element $\bar{a} \in E$ is the symmetric of a in E if

$$a * \bar{a} = e = \bar{a} * a.$$

\bar{a} is the inverse of a and is denoted a^{-1} for the law \times , (\bar{a} is the opposite of a and is denoted $-a$ for the law $+$).

Example 4.0.22 In $\mathbb{R} - \left\{ \frac{1}{2} \right\}$ we define the internal law $*$ by :

$$x * y = x + y - 2xy.$$

1. Closure (internal law): In fact, let $x, y \in \mathbb{R} - \left\{ \frac{1}{2} \right\}$, let's show that $x * y \in \mathbb{R} - \left\{ \frac{1}{2} \right\}$,

$$\begin{aligned} x * y = \frac{1}{2} &\Leftrightarrow x + y - 2xy = \frac{1}{2} \\ &\Leftrightarrow x(1 - 2y) - \frac{1}{2}(1 - 2y) = 0 \\ &\Leftrightarrow (1 - 2y) \left(x - \frac{1}{2} \right) = 0 \\ &\Leftrightarrow \left(y - \frac{1}{2} \right) \left(x - \frac{1}{2} \right) = 0 \\ &\Leftrightarrow y = \frac{1}{2} \text{ or } x = \frac{1}{2}. \end{aligned}$$

Hence $x, y \in \mathbb{R} - \left\{ \frac{1}{2} \right\}$ and then $*$ is an internal law.

2. Commutativity : Let $x, y \in \mathbb{R} - \left\{ \frac{1}{2} \right\}$, we have

$$x * y = x + y - 2xy = y + x - 2yx = y * x,$$

so the law $*$ is commutative.

3. Associativity :

$$\begin{aligned} (x * y) * z &= (x + y - 2xy) * z = (x + y - 2xy) + z - 2(x + y - 2xy)z \\ &= x + y + z - 2xy - 2xz - 2yz + 4xyz \\ &= x + (y + z - 2yz) - 2x(y + z - 2yz) \\ &= x + (y + z - 2yz) - 2x(y + z - 2yz) \\ &= x + (y * z) - 2x(y * z) = x * (y * z), \end{aligned}$$

so the law $*$ is associative.

4. **Neutral element** : Let $e \in \mathbb{R} - \left\{ \frac{1}{2} \right\}$, such that $x * e = e * x = x$, then

$$x + e - 2xe = e + x - 2ex = x \Leftrightarrow e(1 - 2x) = 0 \Leftrightarrow e = 0 \in \mathbb{R} - \left\{ \frac{1}{2} \right\}.$$

Thus, the law $*$ admits as neutral element the element $e = 0$.

5. **Symmetric element (Inverse)** : Let $x \in \mathbb{R} - \left\{ \frac{1}{2} \right\}$, such that $x * \dot{x} = \dot{x} * x = e$, then

$$x + \dot{x} - 2x\dot{x} = 0 \Leftrightarrow \dot{x}(1 - 2x) = -x \Leftrightarrow \dot{x} = \frac{x}{2x - 1},$$

Therefore, the symmetric element of x is

$$\dot{x} = \frac{x}{2x - 1}, \text{ for all } x \in \mathbb{R} - \left\{ \frac{1}{2} \right\}.$$

Let's show that

$$\dot{x} \in \mathbb{R} - \left\{ \frac{1}{2} \right\}.$$

Indeed, we must check:

$$\dot{x} = \frac{x}{2x - 1} \neq \frac{1}{2}$$

Assume

$$\frac{x}{2x - 1} = \frac{1}{2} \Leftrightarrow 2x = 2x - 1 \Leftrightarrow -1 = 0.$$

Impossible, hence. $\dot{x} \in \mathbb{R} - \left\{ \frac{1}{2} \right\}$.

Definition 4.0.23 Let G be a set with two internal laws of composition, denoted Δ and $*$ law is said to be distributive with respect to Δ if $\forall x, y, z \in G$:

$$x * (y\Delta z) = (x * y)\Delta(x * z)$$

and

$$(y\Delta z) * x = (y * x)\Delta(z * x).$$

4.1 Group, Subgroups

Definition 4.1.1 Let G be a nonempty set with an internal composition law

$$* : G \times G \rightarrow G$$

The pair $(G, *)$ is called a group if the following conditions are satisfied :

- (1) $*$ is associative.
- (2) $*$ admits a neutral element (identity elements) e .
- (3) Each element of G admits a symmetric (inverse) element with respect to $*$.

If, moreover, the law $*$ is commutative, then the group is said to be commutative or abelian, (named after the mathematician Abel).

Proposition 4.1.2 • The neutral element of any commutative group is unique.

- Let $(G, *)$ be a commutative group. For each $g \in G$, the symmetric of g (denoted g') is unique.

Proof. • Suppose e and θ are any neutral elements of a commutative group $(G, *)$. Then

$$\begin{aligned} e &= e * \theta \quad (\theta \text{ is a neutral element}) \\ &= \theta * e \quad (* \text{ is commutative}) \\ &= \theta \quad (e \text{ is a neutral element}) \end{aligned}$$

Since e and θ are arbitrary neutral elements of $(G, *)$, this implies that all neutral elements are equal to each other, so the neutral element is unique (there is only one of them).

- Suppose g' and h are any symmetric of g . Then

$$\begin{aligned} g' &= g' * e \quad (e \text{ is a neutral element}) \\ &= g' * (g * h) \quad (h \text{ is a symmetric of } g) \\ &= (g' * g) * h \quad (* \text{ is associative}) \\ &= (g * g') * h \quad (* \text{ is commutative}) \\ &= e * h \quad (g' \text{ is a symmetric of } g) \\ &= h \quad (e \text{ is a neutral element}) \end{aligned}$$

Therefore, all symmetric of g are equal, so the symmetric is unique. ■

Example 4.1.3 (1) $(\mathbb{Z}, +)$ is a commutative group.

- (2) (\mathbb{R}, \times) is not a group because 0 does not admit a symmetric element.
- (3) (\mathbb{R}^*, \times) is a commutative group.

Definition 4.1.4 Let $(G, *)$ be a group. A part $H \subset G$ (non-empty) is a subgroup of G if, the restriction of the operation $*$ to H gives it the group structure.

Proposition 4.1.5 *Let H be a non-empty part of the group G . Then, H is a subgroup of G if, and only if*

- (i) *for all $a, b \in H$, we have $a * b \in H$;*
- (ii) *for all $a \in H$, we have $a' \in H$, where a' is the symmetry of a .*

Example 4.1.6 (\mathbb{R}_+^*, \times) is a subgroup of (\mathbb{R}^*, \times) . Indeed

- *If $x, y \in \mathbb{R}_+^*$ then $x \times y \in \mathbb{R}_+^*$;*
- *If $x \in \mathbb{R}_+^*$ then $x' = x^{-1} = \frac{1}{x} \in \mathbb{R}_+^*$.*

Example 4.1.7 We set $2\mathbb{Z} = \{2z : z \in \mathbb{Z}\}$, $(2\mathbb{Z}, +)$ is a subgroup of \mathbb{Z} . In fact:

- *If $x, y \in 2\mathbb{Z}$, there exists $x_1, y_1 \in \mathbb{Z}$ such that $x = 2x_1$ and $y = 2y_1$, then*

$$x + y = 2x_1 + 2y_1 = 2(x_1 + y_1) \in 2\mathbb{Z},$$

- *If $x \in 2\mathbb{Z}$, there exists $x_1 \in \mathbb{Z}$ such that $x = 2x_1$ then*

$$x' = -x = -2x_1 = 2(-x_1) \in 2\mathbb{Z}.$$

Proposition 4.1.8 *If H is a subgroup of $(G, *)$ then the neutral element $e \in H$.*

Exercise 4.1.9 We define the internal composition law $*$ by:

$$\forall x, y \in \mathbb{R}, \quad x * y = xy + (x^2 - 1)(y^2 - 1)$$

1. Show that $*$ is commutative, non-associative, and that 1 is neutral element.

2. We define the internal composition law $*$ on \mathbb{R}^{+*} by:

$$\forall x, y \in \mathbb{R}^{+*}, \quad x * y = \sqrt{x^2 + y^2}$$

Show that $*$ is commutative, associative, and that 0 is neutral element. Show that no element of \mathbb{R}^{+*} has a symmetric with respect to $*$.

Solution 4.1.10 1.

$$x * y = xy + (x^2 - 1)(y^2 - 1) = yx + (y^2 - 1)(x^2 - 1) = y * x.$$

The law is commutative.

To show that the law is not associative, it is sufficient to find x, y and z such that:

$$x * (y * z) \neq (x * y) * z.$$

Take, for example : $x = 0$, $y = 2$ and $z = 3$,

$$\begin{aligned} x * (y * z) &= 0 * (2 * 3) = 0 * (2 \times 3 + (2^2 - 1)(3^2 - 1)) \\ &= 0 * (6 + 3 \times 8) = 0 * 30 \\ &= 0 + (-1)(900 - 1) = -899. \end{aligned}$$

$$\begin{aligned} (x * y) * z &= (0 * 2) * 3 = (0 + (-1)(3)) * 3 \\ &= -3 * 3 = -3 \times 3 + ((-3)^2 - 1)(3^2 - 1) \\ &= -9 + 8 \times 8 = 55. \end{aligned}$$

The law $*$ is not associative.

$$1 * x = x + (1 - 1)(x^2 - 1) = x.$$

Moreover, since the law is commutative $1 * x = x * 1$.

We have $1 * x = x * 1 = x$, 1 is the neutral element.

2. $\forall x, y \in \mathbb{R}^{+*}$

$$x * y = \sqrt{x^2 + y^2} = \sqrt{y^2 + x^2} = y * x.$$

The law $*$ is commutative.

$$\begin{aligned} (x * y) * z &= \sqrt{x^2 + y^2} * z = \sqrt{(\sqrt{x^2 + y^2})^2 + z^2} = \sqrt{x^2 + y^2 + z^2}. \\ x * (y * z) &= x * \sqrt{y^2 + z^2} = \sqrt{x^2 + (\sqrt{y^2 + z^2})^2} = \sqrt{x^2 + y^2 + z^2}. \end{aligned}$$

The law $*$ is associative.

$$0 * x = \sqrt{0^2 + x^2} = \sqrt{x^2} = |x| = x \text{ because } x \geq 0$$

As $*$ is commutative

$$0 * x = x * 0 = x$$

0 is the neutral element.

Suppose that x admits a symmetric y

$$x * y = 0 \Leftrightarrow \sqrt{x^2 + y^2} = 0 \Leftrightarrow x^2 + y^2 = 0 \Leftrightarrow x = y = 0$$

However, if $x > 0$ and $y > 0$ then $x * y = 0$ is impossible.

Therefore, for any $x > 0$, x does not have a symmetric element with respect to $*$.

4.2 Ring Structure

Definition 4.2.1 Let A be a set with two internal composition laws that we will denote $*$ and Δ . $(A, *, \Delta)$ is said to be a ring if the following conditions are met:

- 1) $(A, *)$ is a commutative group.
- 2) The Δ law is associative.
- 3) The Δ law is distributive in relation to the $*$ law, i.e. :

$$\forall a \in A, \forall b \in A, \forall c \in A : (a * b) \Delta c = a \Delta c * b \Delta c.$$

and

$$c \Delta (a * b) = c \Delta a * c \Delta b.$$

If the Δ law is commutative, the ring $(A, *, \Delta)$ is said to be commutative. If the Δ law admits a neutral element, we say that the ring $(A, *, \Delta)$ is unitary.

Example 4.2.2 $(\mathbb{Z}, +, \times)$ is a commutative and unitary ring.

Definition 4.2.3 If $(A, *, \Delta)$ is a ring and B is a part of A , we say that B is a subring of A if, provided with the laws induced by A , is itself a ring, i.e. $(B, *, \Delta)$ is a ring.

In the following, A will denote the ring $(A, +, \times)$ with 0 the neutral element of $+$ and if it is unitary, 1 would be its unit.

Proposition 4.2.4 (characterization of the subrings). A part B of ring A is a subring of A if and only if:

- (i) for all $a, b \in B$, $a - b \in B$
- (ii) for all $a, b \in B$, $a \times b \in B$.

Example 4.2.5 The set $2\mathbb{Z} = \{2z : z \in \mathbb{Z}\}$ is a subring of the ring $(\mathbb{Z}, +, \times)$. In fact, let $x, y \in 2\mathbb{Z}$, there exists $n, m \in \mathbb{Z}$, such that $x = 2n$ and $y = 2m$, and we have

$$x - y = 2(n - m) \in 2\mathbb{Z} \text{ and } x \times y = 2(2nm) \in 2\mathbb{Z}$$

4.3 Structure of a field (body)

Definition 4.3.1 Let K be a set with two internal composition laws always denoted $*$ and Δ . $(K, *, \Delta)$ is said to be a field if the following conditions are met:

- 1) $(K, *, \Delta)$ is a ring.
- 2) $(K - \{e\}, \Delta)$ is a group, where e is the neutral element of $*$.

If Δ is commutative, we say that $(K, *, \Delta)$ is a commutative field.

Example 4.3.2 $(\mathbb{R}, +, \times)$ is a commutative field (body).

Definition 4.3.3 If K is a field and H a non-empty part of K then, H is said to be a subfield of K if the restrictions of the two operations of K give H the structure of a field.

The following result characterizes any subfield H of a given field :

Proposition 4.3.4 If H is a non-empty part of a field K then, H is a subfield of K if, and only if,

- (1) $a \in H$ and $b \in H \Rightarrow a - b \in H$,
- (2) $a \in H$ and $b \in H - \{0\} \Rightarrow a \cdot b^{-1} \in H$.

Example 4.3.5 • The set $(\mathbb{R}, +, \times)$ of real numbers is a subfield of the field $(\mathbb{C}, +, \times)$.

- The set $(\mathbb{Q}, +, \times)$ of rationals is a subfield of the field $(\mathbb{R}, +, \times)$ and therefore of $(\mathbb{C}, +, \times)$.