

Chapter 5

Vector spaces

In this chapter \mathbb{K} represents a field.

5.1 Vector space

Definition 5.1.1 Let \mathbb{K} be a commutative field (usually it is \mathbb{R} or \mathbb{C}) and let E be a non-empty set with an **internal composition law** called addition and denoted "+"

$$\begin{aligned} + : E \times E &\rightarrow E \\ (x, y) &\mapsto x + y \end{aligned}$$

and an **external composition law** called multiplication by a scalar and denoted by "·"

$$\begin{aligned} \cdot : \mathbb{K} \times E &\rightarrow E \\ (\lambda, x) &\mapsto \lambda \cdot x \end{aligned}$$

Definition 5.1.2 A vector space on the field \mathbb{K} or a \mathbb{K} -vector space is a triplet $(E, +, \cdot)$ such that:

1. $(E, +)$ is a commutative group, where the neutral element is denoted by 0_E and the symmetric of an element x of E will be denoted $-x$.

2. $\forall \alpha, \beta \in \mathbb{K}, \forall x \in E,$

$$\alpha \cdot (\beta \cdot x) = (\alpha\beta) \cdot x$$

3. $\forall \alpha, \beta \in \mathbb{K}, \forall x \in E,$

$$(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$$

4. $\forall \alpha \in \mathbb{K}, \forall x, y \in E,$

$$\alpha \cdot (x + y) = (\alpha \cdot x) + (\alpha \cdot y)$$

5. $1_K \cdot x = x.$

Remark 5.1.3 1. The elements of E are called vectors and those of \mathbb{K} scalars.

2. “vector space over \mathbb{K} ”, means \mathbb{K} -vector space.

Example 5.1.4 - $(\mathbb{R}, +, \cdot)$ is an \mathbb{R} -vector space,

- $(\mathbb{C}, +, \cdot)$ is an \mathbb{C} -vector space,

- If we consider \mathbb{R}^n with the following two operations

$$\begin{aligned} (+) : \quad \mathbb{R}^n \times \mathbb{R}^n &\rightarrow \mathbb{R}^n \\ ((x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n)) &\rightarrow (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) \end{aligned}$$

and

$$\begin{aligned} (\cdot) : \quad \mathbb{R} \times \mathbb{R}^n &\rightarrow \mathbb{R}^n \\ (\lambda, (x_1, x_2, \dots, x_n)) &\rightarrow (\lambda x_1, \lambda x_2, \dots, \lambda x_n) \end{aligned}$$

we can easily show that $(\mathbb{R}^n, +, \cdot)$ is an \mathbb{R} -vector space.

Example 5.1.5 The set $E = F(\mathbb{R}, \mathbb{R})$ of functions from \mathbb{R} to \mathbb{R} endowed with the usual laws, addition of functions and multiplication of the functions by a real number:

$$(f + g)(x) = f(x) + g(x)$$

and

$$(\alpha \cdot f)(x) = \alpha \cdot f(x),$$

is a \mathbb{R} -vector space.

Proposition 5.1.6 If E is \mathbb{K} -vector space, then we have the following properties:

- (1) $\forall x \in E, 0_{\mathbb{K}} \cdot x = 0_E$,
- (2) $\forall x \in E, (-1_{\mathbb{K}}) \cdot x = -x$
- (3) $\forall \lambda \in \mathbb{K}, \lambda 0_E = 0_E$
- (4) $\forall \lambda \in \mathbb{K}, \forall x, y \in E, \lambda \cdot (x - y) = \lambda \cdot x - \lambda \cdot y$
- (5) $\forall \lambda \in \mathbb{K}, \forall x \in E, \lambda \cdot x = 0_E \Leftrightarrow \lambda = 0_{\mathbb{K}} \text{ or } x = 0_E$.

5.1.1 Vector subspace

In this part, E will denote a \mathbb{K} -vector space.

Definition 5.1.7 A subset F of E is called a vector subspace of E if

- (i) $\emptyset \neq F \subset E$,
- (ii) F is a \mathbb{K} -vector space with respect to the same laws.

Remark 5.1.8 1) When $(F, +, \cdot)$ is a vector subspace of E then $0_E \in F$.

2) If $0_E \notin F$. then $(F, +, \cdot)$ cannot be a vector subspace of E .

Theorem 5.1.9 Let F be a nonempty subset of E , the following assertions are equivalent :

- (1) F is a vector subspace of over \mathbb{K} ,
- (2) F is stable for addition and for multiplication by a scalar .i.e

$$\forall \lambda \in \mathbb{K}, \forall x, y \in F, \lambda x \in F \text{ and } x + y \in F.$$

$$(3) \forall \lambda, \mu \in \mathbb{K}, \forall x, y \in F, \lambda x + \mu y \in F.$$

Theorem 5.1.10 A subset F of E is called a vector subspace of E if the following condition hold :

- (i) $0_E \in F$,
- (ii) $\forall x, y \in F, x + y \in F$,
- (iii) $\forall \alpha \in \mathbb{K}, \forall x \in F, \alpha x \in F$.

Example 5.1.11 (1) E and 0_E are vector subspaces of E .

(2) $F = \{(x, y) \in \mathbb{R}^2 / x + y = 0\}$ is a vector subspace of \mathbb{R}^2 over \mathbb{R} because ,

$$- 0_E = 0_{\mathbb{R}^2} = (0, 0) \in F \Rightarrow F \neq \emptyset$$

- $\forall (x, y), (x', y') \in F, \forall \alpha, \beta \in \mathbb{R} : \alpha(x, y) + \beta(x', y') \in F$, i.e $(\alpha x + \beta x', \alpha y + \beta y') \in F$, we have

$$\begin{aligned} (x, y) \in F &\Rightarrow x + y = 0 \text{ and } (x', y') \in F \Rightarrow x' + y' = 0 \\ \alpha x + \beta x' + \alpha y + \beta y' &= \alpha(x + y) + \beta(x' + y') = \alpha(0) + \beta(0) = 0 \end{aligned}$$

Then $\alpha(x, y) + \beta(x', y') \in F$, so F is vector subspace of \mathbb{R}^2 .

(3). The set $F = \{(x, y) \in \mathbb{R}^2 / x - y + 1 = 0\}$ is not a vector subspace of \mathbb{R}^2 because the zero vector $0_{\mathbb{R}^2}$ does not belong to F .

5.1.2 Intersection and union of vector subspaces

Proposition 5.1.12 The intersection of two vector sub-spaces is a vector subspace.

Proof. Consider F_1 and F_2 two vector subspaces of E . First $0_E \in F_1$, because F_1 is a vector subspace of E . Similarly, $0_E \in F_2$. Thus, $0_E \in F_1 \cap F_2$ and $F_1 \cap F_2$ is therefore not empty. Given $x, y \in F_1 \cap F_2$ and $\alpha, \beta \in \mathbb{R}$, then we have $\alpha x + \beta y \in F_1$ since F_1 is a vector subspace of E . Similarly, $\alpha x + \beta y \in F_2$. Thus, $\alpha x + \beta y \in F_1 \cap F_2$. It follows that $F_1 \cap F_2$ is a vector subspace of E . ■

Lemma 5.1.13 *The intersection $\cap_{i=1}^n F_i$ of n vector subspaces of a vector space E ($n \geq 2$, $n \in \mathbb{N}$) is a vector subspace of E .*

Remark 5.1.14 *The union of two vector subspaces is not necessarily a vector subspace.*

Example 5.1.15 *Let $F_1 = \{(x, y) \in \mathbb{R}^2, x = 0\}$ and $F_2 = \{(x, y) \in \mathbb{R}^2, y = 0\}$ two vector subspaces in \mathbb{R}^2 , $F_1 \cup F_2$ is not a vector subspace, because $u_1 = (0, 1) \in F_1$, $u_2 = (1, 0) \in F_2$ and $u_1 + u_2 = (1, 1) \notin F_1 \cup F_2$.*

5.1.3 Sum of two vector subspaces

Definition 5.1.16 *Let E_1, E_2 be two vector subspaces of a \mathbb{K} -vector space E , we call the sum of the two vector subspaces E_1 and E_2 that we denote $E_1 + E_2$ the following set:*

$$E_1 + E_2 = \{x \in E : \exists x_1 \in E_1, \exists x_2 \in E_2 \text{ such that } x = x_1 + x_2\}.$$

Example 5.1.17 *Let $E_1 = \{(x, y) \in \mathbb{R}^2, x = 0\}$ and $E_2 = \{(x, y) \in \mathbb{R}^2, y = 0\}$ vector subspaces in \mathbb{R}^2 , if $(x, y) \in \mathbb{R}^2$, then*

$$(x, y) = \underset{\in E_1}{(x, 0)} + \underset{\in E_2}{(0, y)},$$

so $(x, y) \in E_1 + E_2$, hence $E_1 + E_2 = \mathbb{R}^2$.

Proposition 5.1.18 *The sum of two vector subspaces E_1 and E_2 (of the same \mathbb{K} -vector space) is a vector subspace of E containing $E_1 \cup E_2$, i.e., $E_1 \cup E_2 \subset E_1 + E_2$.*

5.1.4 Direct sum of two vector subspaces

Definition 5.1.19 *Let E_1 and E_2 be two vector subspaces of the same \mathbb{K} -vector space E . We will say that the sum: $E_1 + E_2$ of two vector subspaces is direct if $E_1 \cap E_2 = \{0_E\}$. We write $E_1 \oplus E_2$.*

Proposition 5.1.20 *Let E_1 and E_2 be two vector subspaces of the same \mathbb{K} -vector space E . The sum $E_1 + E_2$ is direct if $\forall x \in E_1 + E_2$, there exists a single vector $x_1 \in E_1$, a single vector $x_2 \in E_2$, such that $x = x_1 + x_2$.*

Example 5.1.21 *Let $F_1 = \{(x, y, z) \in \mathbb{R}^3 : x = 0\}$ and $F_2 = \{(x, y, z) \in \mathbb{R}^3 : y = z = 0\}$ be two vector subspaces in \mathbb{R}^3 .*

- Let $(x, y, z) \in \mathbb{R}^3$, then $(x, y, z) = \underset{\in F_1}{(0, y, z)} + \underset{\in F_2}{(x, 0, 0)}$, so $(x, y, z) \in F_1 + F_2$, hence $F_1 + F_2 = \mathbb{R}^3$.

- Let $(x, y, z) \in F_1 \cap F_2$, then $(x, y, z) \in F_1$ and $(x, y, z) \in F_2$, this means that $x = 0$ and $y = z = 0$, then $(x, y, z) = 0_{\mathbb{R}^3}$, i.e. $F_1 \cap F_2 = \{0_{\mathbb{R}^3}\}$.

Finally, we conclude that $\mathbb{R}^3 = F_1 \oplus F_2$.

5.1.5 Generating, free, and basis families

Linear combination

Definition 5.1.22 For $n \in \mathbb{N}^*$, A linear combination of vectors u_1, u_2, \dots, u_n of a \mathbb{K} -vector space E , is a vector which can be written $V = \sum_{i=1}^n \lambda_i u_i$. The elements $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ are called coefficients of the linear combination.

Example 5.1.23 In \mathbb{R}^2 , the vector $U = (9, 8)$ is a linear combination of vectors $(1, 2)$ and $(3, 1)$ because

$$U = (9, 8) = 3(1, 2) + 2(3, 1)$$

Remark 5.1.24 • If F is a vector subspace of E , and $u_1, u_2, \dots, u_n \in F$, then any linear combination of u_1, u_2, \dots, u_n is in F .

• Let u_1, u_2, \dots, u_n , n vectors of a \mathbb{K} -vector space E . One can always write 0_E as a linear combination of these vectors, because it suffices to take all zero coefficients of the linear combination.

• If $n = 1$, then $V = \lambda_1 u_1$ we say that V is collinear with u_1 .

Generating (Spanning) family

Definition 5.1.25 We consider a nonempty family $A = (u_1, u_2, \dots, u_n)$ of vectors of a \mathbb{K} -vector space E with $n \in \mathbb{N}^*$. We say that A generates (spans) E , or that it is generator of E if and only if

$$\text{Span} \{u_1, u_2, \dots, u_n\} = E.$$

In other words, any vector of E is a linear combination of the elements of A .

Notation 4 Given the vectors u_1, u_2, \dots, u_n of \mathbb{K} -vector space E , we denote $\text{Span}(u_1, u_2, \dots, u_n)$ or $\langle u_1, u_2, \dots, u_n \rangle$ the set of linear combination of u_1, u_2, \dots, u_n . So we write :

$$\langle u_1, u_2, \dots, u_n \rangle = \text{Span} \{u_1, u_2, \dots, u_n\} = \left\{ u \in E / \exists \lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}; u = \sum_{i=1}^n \lambda_i u_i \right\}.$$

Example 5.1.26 $A = \{u_1 = (1, 0, 0), u_2 = (0, 1, 0), u_3 = (0, 0, 1)\}$ generates \mathbb{R}^3 , because for all $U = (x, y, z) \in \mathbb{R}^3$ we have:

$$(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).$$

Example 5.1.27 In \mathbb{R}^2 , we consider the vectors $u_1 = (1, 1)$, $u_2 = (1, 0)$ and $u_3 = (0, -1)$. Let us check that the family (u_1, u_2, u_3) generates \mathbb{R}^2 . Let $X = (x, y) \in \mathbb{R}^2$, we seek if there exists $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$ such that $X = \lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3$.

$$\begin{aligned} X = (x, y) = \lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3 &\Leftrightarrow \begin{cases} x = \lambda_1 + \lambda_2 \\ y = \lambda_1 - \lambda_3 \end{cases} \\ &\Leftrightarrow \begin{cases} \lambda_2 = x - \lambda_1 \\ \lambda_3 = \lambda_1 - y. \end{cases} \end{aligned}$$

We therefore obtain $X = \lambda_1 u_1 + (x - \lambda_1) u_2 + (\lambda_1 - y) u_3$, with $\lambda_1 \in \mathbb{R}$. So (u_1, u_2, u_3) is a generating family of \mathbb{R}^2 .

Free families

Definition 5.1.28 We consider a nonempty family $A = (u_1, u_2, \dots, u_n)$ of E with $n \in \mathbb{N}^*$. We say that A is free if and only if the null vector 0_E is a linear combination of elements of A unique way. In other words:

$$\forall \lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}, \sum_{i=1}^n \lambda_i u_i = 0_E \Rightarrow \lambda_1 = \lambda_2 = \dots = \lambda_n = 0_{\mathbb{K}}.$$

Example 5.1.29 The set $A = \{u_1 = (1, 0, 1), u_2 = (0, 2, 2), u_3 = (3, 7, 1)\}$ is free.

Indeed, let $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$, we have

$$\lambda_1(1, 0, 1) + \lambda_2(0, 2, 2) + \lambda_3(3, 7, 1) = 0_{\mathbb{R}^3} \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0_{\mathbb{R}}.$$

Remark 5.1.30 We can use the following expressions:

- If A is free then we also say that the vectors u_1, u_2, \dots, u_n are linearly independent.
- If A is not free, we say that A is linked.
- A family of a single vector is free if and only if this vector is non-zero.

Example 5.1.31 In \mathbb{R}^2 , the vector $u = (2, 1)$ is not collinear with $v = (1, 1)$, that is to say is free.

Indeed: let $(\lambda_1, \lambda_2) \in \mathbb{R}^2$, such that

$$\lambda_1 u + \lambda_2 v = 0_{\mathbb{R}^2} \Leftrightarrow \begin{cases} 2\lambda_1 + \lambda_2 = 0 \\ \lambda_1 + \lambda_2 = 0 \end{cases} \Rightarrow \lambda_1 = \lambda_2 = 0_{\mathbb{R}}.$$

The unique solution found is the trivial solution $(0, 0)$, the family (u, v) is therefore free.

Example 5.1.32 In \mathbb{R}^2 , the vectors $u = (1, 2)$, $v = (3, 4)$ and $w = (5, 6)$ are linearly dependent.

Indeed: let $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$, such that

$$\begin{aligned} \lambda_1 u + \lambda_2 v + \lambda_3 w = 0_{\mathbb{R}^2} &\Leftrightarrow \begin{cases} \lambda_1 + 3\lambda_2 + 5\lambda_3 = 0 \\ 2\lambda_1 + 4\lambda_2 + 6\lambda_3 = 0 \end{cases} \\ &\Leftrightarrow \begin{cases} \lambda_1 + 3\lambda_2 + 5\lambda_3 = 0 \\ \lambda_1 + 2\lambda_2 + 3\lambda_3 = 0 \end{cases} \\ &\Leftrightarrow \begin{cases} \lambda_2 + 2\lambda_3 = 0 \\ \lambda_1 + 2\lambda_2 + 3\lambda_3 = 0 \end{cases} \\ &\Leftrightarrow \begin{cases} \lambda_2 = -2\lambda_3 \\ \lambda_1 = \lambda_3. \end{cases} \end{aligned}$$

So, this system admits at least one non-trivial solution, for example:

$$\lambda_1 = 1, \lambda_2 = -2 \text{ and } \lambda_3 = 1.$$

Since $u - 2v + w = 0_{\mathbb{R}^2}$, the family $\{u, v, w\}$ is linearly dependent

Basis

Definition 5.1.33 Let E be a vector space over a field \mathbb{K} . A family

$$A = (u_1, u_2, \dots, u_n)$$

is called a basis of E if it is linearly independent and generating.

Equivalently, A is a basis of E if and only if every vector $u \in E$ can be written in a unique way as a linear combination of the vectors in A :

$$\forall u \in E, \exists! (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{K}^n, \text{ such that } u = \sum_{i=1}^n \lambda_i u_i.$$

The scalars $\lambda_1, \lambda_2, \dots, \lambda_n$ are called the coordinates of u in the basis A .

Example 5.1.34 • $B_1 = \{(1, 0), (0, 1)\}$ is the canonical basis of \mathbb{R}^2 .

- $B_2 = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ is the canonical basis of \mathbb{R}^3 .
- $B_3 = \{(1, 0, \dots, 0), (0, 1, 0, \dots, 0), \dots, (0, \dots, 0, 1)\}$ is the canonical basis of \mathbb{R}^n .

Example 5.1.35 Consider the vector space of real polynomials of degree less than or equal to 2.

$$\mathbb{R}_2[x] = \{P(x) = a + bx + cx^2 / a, b, c \in \mathbb{R}\}$$

We claim that the family

$$\mathcal{B} = \{P_1(x) = 1, P_2(x) = x, P_3(x) = x^2\}$$

is a basis of $\mathbb{R}_2[x]$.

In fact,

i) Linear independence

Let $\alpha, \beta, \gamma \in \mathbb{R}$, suppose that

$$\forall x \in \mathbb{R}, \alpha P_1(x) + \beta P_2(x) + \gamma P_3(x) = 0.$$

This is equivalent to

$$\forall x \in \mathbb{R}, \alpha + \beta x + \gamma x^2 = 0.$$

(Since a polynomial that is identically zero must have all coefficients equal to zero, we obtain.

$$\alpha = \beta = \gamma = 0$$

Hence, $\{1, x, x^2\}$ is a linearly independent (free) family.

ii) Generating property

Let $P \in \mathbb{R}_2[x]$, by definition, there exist $a, b, c \in \mathbb{R}$, such that

$$\forall x \in \mathbb{R}, P(x) = a + bx + cx^2 = aP_1(x) + bP_2(x) + cP_3(x),$$

or equivalently,

$$P = aP_1 + bP_2 + cP_3.$$

Therefore, $\{1, x, x^2\}$ generates $\mathbb{R}_2[x]$.

Example 5.1.36 Let

$$u_1 = (1, 1), u_2 = (1, 0), u_3 = (0, -1)$$

be vectors in \mathbb{R}^2 . As seen in the previous example, the family (u_1, u_2, u_3) is a generating family of \mathbb{R}^2 . However, this family is linearly dependent (linked), since

$$u_1 + u_3 = u_2,$$

which yields a non-trivial linear relation between the vectors. Therefore, (u_1, u_2, u_3) is not a basis of \mathbb{R}^2 . On the other hand, the family (u_1, u_2) is both linearly independent and generating in \mathbb{R}^2 . Consequently, (u_1, u_2) is a basis of \mathbb{R}^2 .

Example 5.1.37 Let F be the subset of \mathbb{R}^3 defined by:

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x = -2y + z\}$$

F is therefore a vector subspace of \mathbb{R}^3 generated by the vectors

$$u = (-2, 1, 0) \text{ and } v = (1, 0, 1).$$

Indeed

$$\begin{aligned} F = \{(x, y, z) \in \mathbb{R}^3 \mid x = -2y + z\} &= \{(-2y + z, y, z) \mid (y, z) \in \mathbb{R}^2\} \\ &= \{y(-2, 1, 0) + z(1, 0, 1) \mid (y, z) \in \mathbb{R}^2\} \\ &= \text{Span}\{(-2, 1, 0), (1, 0, 1)\} = \langle(-2, 1, 0), (1, 0, 1)\rangle \end{aligned}$$

Furthermore, these vectors form a free family so (u, v) is a basis of F .

Proposition 5.1.38 Let E be a vector space. If

$$\{e_1, e_2, \dots, e_n\} \text{ and } \{u_1, u_2, \dots, u_m\}$$

are two bases of E , then $n = m$.

Remark 5.1.39 If a vector space E admits a basis, then all the bases of E have the same number of elements, this number does not depend on the basis but it only depends on the space E . This common number is called the dimension of E .

5.1.6 Dimension of vector spaces

Definition 5.1.40 Let E be a vector space over a field \mathbb{K} , and let $\mathcal{B} = \{e_1, e_2, \dots, e_n\}$ be a basis of E , The dimension of E , denoted $\dim(E)$, is defined as

$$\dim(E) = \text{Card}(\mathcal{B}),$$

that is, the number of elements of the basis \mathcal{B} .

Example 5.1.41 Let

$$e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1).$$

The family $\{e_1, e_2, e_3\}$ is a basis of \mathbb{R}^3 , called the canonical (standard) basis.

Therefore,

$$\dim(\mathbb{R}^3) = \text{Card}(\{e_1, e_2, e_3\}) = 3.$$

Example 5.1.42 In the vector space $\mathbb{R}_2[x]$, the family $\{1, x, x^2\}$ is a basis. Therefore,

$$\dim(\mathbb{R}_2[x]) = \text{Card}\{1, x, x^2\} = 3.$$

Theorem 5.1.43 Let E be a vector space of dimension n , then :

1) Characterization of a basis: A family $\{e_1, e_2, \dots, e_n\}$ of n vectors in E is the basis of E if and only if it is either: generating, or linearly independent (free). That is,

$$\{e_1, e_2, \dots, e_n\} \text{ is a basis} \Leftrightarrow \text{it is generating} \Leftrightarrow \text{it is free.}$$

2) Families with more than n vectors: Let $\{e_1, e_2, \dots, e_p\}$ be p vectors in E , with $p > n$, then :

- The family cannot be free (it is linearly dependent).

• If the family is generating, then there exists a subset of n vectors among them that forms a basis of E .

3) Families with fewer than n vectors: Let $\{e_1, e_2, \dots, e_p\}$ be p vectors in E , with $p < n$, then :

- The family cannot be generating (it does not span E).

• If the family is free, it is possible to find $(n-p)$ additional vectors $\{e_{p+1}, e_{p+2}, \dots, e_n\}$ in E such that $\{e_1, e_2, \dots, e_{p+1}, \dots, e_n\}$ forms a basis for E .

4) If F is a vector subspace of E : then $\dim F \leq n$, and moreover $\dim F = n \Leftrightarrow F = E$.

Proposition 5.1.44 Let E be a finite-dimensional vector space, and let F_1, F_2 be subspaces of E , then:

$$\dim(F_1 + F_2) = \dim F_1 + \dim F_2 - \dim(F_1 \cap F_2),$$

where $F_1 + F_2 = \{u + v \mid u \in F_1, v \in F_2\}$ is the sum of subspaces and $F_1 \cap F_2$ is their intersection.

Exercise 5.1.45 Consider the subsets of \mathbb{R}^3 :

$$E = \{(x, y, 0) \in \mathbb{R}^3 \mid x, y \in \mathbb{R}\} \text{ and } F = \{(x, 0, x) \mid x \in \mathbb{R}\}.$$

1. Show that E and F are vector subspaces of \mathbb{R}^3 over \mathbb{R} .
2. Calculate $\dim(E)$ and $\dim(F)$.
3. Determine $E \cap F$.
4. Is $\mathbb{R}^3 = E \oplus F$?

Solution 5.1.46 1. Show that E and F are vector subspaces of \mathbb{R}^3 over \mathbb{R} .

- To show that E is a vector subspace, we verify the following conditions:

(a) Non-empty: The zero vector $(0, 0, 0) \in E$ (taking $x = 0, y = 0$).

(b) Closed under addition: Let $u = (x_1, y_1, 0)$ and $v = (x_2, y_2, 0)$ be in E . Then:

$$u + v = (x_1 + x_2, y_1 + y_2, 0) \in E.$$

(c) Closed under scalar multiplication: Let $u = (x, y, 0) \in E$ and $\lambda \in \mathbb{R}$. Then:

$$\lambda u = (\lambda x, \lambda y, 0) \in E.$$

Thus, E is a vector subspace.

- For F :

(a) Non-empty: The zero vector $(0, 0, 0) \in F$ (taking $x = 0$).

(b) Closed under addition: Let $u = (x_1, 0, x_1)$ and $v = (x_2, 0, x_2)$ be in F . Then:

$$u + v = (x_1 + x_2, 0, x_1 + x_2) \in F.$$

(c) Closed under scalar multiplication: Let $u = (x, 0, x) \in F$ and $\lambda \in \mathbb{R}$. Then:

$$\lambda u = (\lambda x, 0, \lambda x) \in F.$$

Thus, F is also a vector subspace.

2. Calculate $\dim(E)$, $\dim(F)$

(a) To find the dimension of E , we have:

$$\begin{aligned} E &= \{(x, y, 0) : x, y \in \mathbb{R}\} \\ &= \{x(1, 0, 0) + y(0, 1, 0) : x, y \in \mathbb{R}\} \\ &= \text{span}\{(1, 0, 0), (0, 1, 0)\}. \end{aligned}$$

The vectors $(1, 0, 0)$ and $(0, 1, 0)$ are linearly independent and therefore form a basis for E . Thus, we conclude that the dimension of E is: $\dim(E) = 2$.

(b) To find the dimension of F : The vector $(1, 0, 1)$ spans F since any vector in F can be expressed as $x(1, 0, 1)$ for some x . Thus, we have:

$$\dim(F) = 1.$$

3. To find $E \cap F$, we note that:

$$(x, y, z) \in E \cap F \Rightarrow (x, y, z) \in E \text{ and } (x, y, z) \in F.$$

This implies:

$$(x, y, z) \in E \Rightarrow z = 0, (x, y, z) \in F \Rightarrow y = 0 \text{ and } z = x.$$

Thus, the intersection is:

$$E \cap F = \{(0, 0, 0)\}.$$

4. The dimension of $E + F$ can be calculated using the formula:

$$\dim(E + F) = \dim(E) + \dim(F) - \dim(E \cap F).$$

Substituting the dimensions, we find:

$$\dim(E + F) = 2 + 1 - 0 = 3.$$

Since $\dim(\mathbb{R}^3) = 3$ and $\dim(E + F) = 3$, we conclude that $E + F = \mathbb{R}^3$. Furthermore, since $E + F = \mathbb{R}^3$ and from Question 3 we have $E \cap F = \{(0, 0, 0)\}$, we conclude that $\mathbb{R}^3 = E \oplus F$.

5.2 Linear applications

5.2.1 Definitions and examples

Definition 5.2.1 (linear map) Let E and F be two vector spaces over a field \mathbb{K} .

A map $f : E \rightarrow F$ is called linear if it satisfies both of the following conditions:

$$\begin{aligned} \forall x, y \in E, f(x + y) &= f(x) + f(y), \\ \forall x \in E, \forall \lambda \in \mathbb{K}, f(\lambda x) &= \lambda f(x), \end{aligned}$$

Equivalently,

$$\forall x, y \in E, \lambda \in \mathbb{K}, f(\lambda x + y) = \lambda f(x) + f(y).$$

Remark 5.2.2 The set of linear maps of E to F is denoted by $\mathcal{L}(E, F)$.

Example 5.2.3 The map f defined by

$$\begin{aligned} f : \mathbb{R}^3 &\rightarrow \mathbb{R}^2, \\ (x, y, z) &\rightarrow f(x, y, z) = (2x + y, y - z) \end{aligned}$$

is a linear map.

Indeed, let $(x, y, z), (\dot{x}, \dot{y}, \dot{z}) \in \mathbb{R}^3$ and $\lambda \in \mathbb{R}$. Then

$$\begin{aligned} f[(x, y, z) + (\dot{x}, \dot{y}, \dot{z})] &= f(x + \dot{x}, y + \dot{y}, z + \dot{z}) \\ &= (2(x + \dot{x}) + (y + \dot{y}), (y + \dot{y}) - (z + \dot{z})) \\ &= (2x + 2\dot{x} + y + \dot{y}, y + \dot{y} - z - \dot{z}) \\ &= ((2x + y) + (2\dot{x} + \dot{y}), (y - z) + (\dot{y} - \dot{z})) \\ &= (2x + y, y - z) + (2\dot{x} + \dot{y}, \dot{y} - \dot{z}) \\ &= f(x, y, z) + f(\dot{x}, \dot{y}, \dot{z}), \end{aligned}$$

and

$$\begin{aligned} f(\lambda(x, y, z)) &= f(\lambda x, \lambda y, \lambda z) \\ &= (2\lambda x + \lambda y, \lambda y - \lambda z) \\ &= (\lambda(2x + y), \lambda(y - z)) \\ &= \lambda(2x + y, y - z) \\ &= \lambda f(x, y, z). \end{aligned}$$

Example 5.2.4 The map $f : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ defined by

$$f(x, y) = (x^2, x + y, 1)$$

is not linear.

Indeed,

$$f((1, 0) + (0, 0)) = f(1, 0) = (1, 1, 1),$$

whereas

$$f(1, 0) + f(0, 0) = (1, 1, 1) + (0, 0, 1) = (1, 1, 2).$$

hence,

$$f((1, 0) + (0, 0)) \neq f(1, 0) + f(0, 0).$$

Proposition 5.2.5 If f is a linear map from E to F , then :

1. $f(0_E) = 0_F$.
2. $f(-x) = -f(x)$.
3. If V_1 is a subspace of E , then $f(V_1)$ is a subspace of F .
4. If W_1 is a subspace of F , then $f^{-1}(W_1)$ is a subspace of E .
5. The composition of two linear maps is a linear map.

Proposition 5.2.6 Let E and F be vector spaces over K , and let $f, g \in \mathcal{L}(E, F)$. If E is finite-dimensional of dimension n and $\{e_1, e_2, \dots, e_n\}$ is basis of E , then

$$\forall k \in \{1, 2, \dots, n\}, f(e_k) = g(e_k) \Leftrightarrow \forall x \in E, f(x) = g(x).$$

Proof. The implication (\Leftarrow) is obvious.

For (\Rightarrow) , since $\{e_1, e_2, \dots, e_n\}$ generates E , for any $x \in E$ there exist scalars $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ such that

$$x = \sum_{i=1}^n \lambda_i e_i.$$

Since f and g are linear maps,

$$f(x) = \sum_{i=1}^n \lambda_i f(e_i), g(x) = \sum_{i=1}^n \lambda_i g(e_i).$$

If $f(e_i) = g(e_i)$ for all i , then $f(x) = g(x)$ for all $x \in E$. ■

5.2.2 Linear maps and dimension

Let $f : E \rightarrow F$ be a linear map.

The kernel of a linear map

Definition 5.2.7 *The kernel (or null space) of f , denoted by $\ker f$, is the set of all vectors $x \in E$ such that $f(x) = 0_F$ (the zero vector of F):*

$$\ker f = \{x \in E \mid f(x) = 0_F\} = f^{-1}(\{0_F\})$$

The image of a linear map

Definition 5.2.8 *The image of f , denoted by $\text{Im } f$, is the set of all vectors in F of the form $f(x)$ for some $x \in E$:*

$$\text{Im } f = \{f(x) \mid x \in E\} = f(E)$$

Proposition 5.2.9 *Let $f : E \rightarrow F$ be a linear map. Then:*

1. $\ker f$ is a subspace of E .
2. $\text{Im } f$ is a subspace of F .
3. f is injective if and only if $\ker f = \{0_E\}$.
4. f is surjective if and only if $\text{Im } f = F$.

Example 5.2.10 *Consider the map $f : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ defined by*

$$f(x, y, z) = (x + y, z).$$

This map is not injective but is surjective.

- *Injectivity*

$$\begin{aligned} \ker f &= \{(x, y, z) \in \mathbb{R}^3 \mid (x + y, z) = (0, 0)\} \\ &= \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0, z = 0\} \\ &= \{(x, y, z) \in \mathbb{R}^3 \mid y = -x, z = 0\} \\ &= \{(x, -x, 0) \mid x \in \mathbb{R}\} \end{aligned}$$

Since

$$(1, -1, 0) \in \ker f \Rightarrow \ker f \neq \{0_{\mathbb{R}^3}\}.$$

Hence, f is not injective.

- *Surjectivity.*

$$\begin{aligned} \text{Im } f &= \{(x + y, z) \mid (x, y, z) \in \mathbb{R}^3\} \\ &= \{x(1, 0) + y(1, 0) + z(0, 1) \mid x, y, z \in \mathbb{R}\}. \end{aligned}$$

Thus,

$$\text{Im } f = \text{span} \{(1, 0), (0, 1)\} = \mathbb{R}^2,$$

and f is surjective.

Proposition 5.2.11 *Let $f : E \rightarrow F$ be a linear map, with E of finite dimension. Then:*

$$\dim E = \dim \ker f + \dim \text{Im } f$$

The rank of a linear map

Definition 5.2.12 *The rank of a linear map f is the dimension of its image :*

$$\text{rank } f = \dim \text{Im } f$$

Example 5.2.13 *Find $\ker f$, $\text{Im } f$ and $\text{rank } f$ for the map $f : \mathbb{R}^4 \rightarrow \mathbb{R}^3$ defined by*

$$f(x, y, z, t) = (x - y, z + t, x - y + z)$$

Kernel

$$\ker f = \{(x, y, z, t) \in \mathbb{R}^4 / (x - y, z + t, x - y + z) = (0, 0, 0)\}$$

From $x - y = 0$, we get $x = y$.

From $x - y + z = 0$, we get $z = 0$, hence $t = 0$.

Thus,

$$\ker f = \{(x, x, 0, 0) / x \in \mathbb{R}\} = \text{span}\{(1, 1, 0, 0)\}.$$

Image

$$\begin{aligned} \text{Im } f &= \{(x - y, z + t, x - y + z) / x, y, z, t \in \mathbb{R}\} \\ &= \{(x - y).(1, 0, 1) + t.(0, 1, 0) + z(0, 1, 1) / x, y, z, t \in \mathbb{R}\} \\ &= \text{span}\{(1, 0, 1), (0, 1, 0), (0, 1, 1)\}. \end{aligned}$$

To check linear independence, let $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$:

$$\begin{aligned} \lambda_1(1, 0, 1) + \lambda_2(0, 1, 0) + \lambda_3(0, 1, 1) &= (0, 0, 0) \\ \Rightarrow (\lambda_1, \lambda_2 + \lambda_3, \lambda_1 + \lambda_3) &= (0, 0, 0) \\ \Rightarrow \lambda_1 = \lambda_2 + \lambda_3 = \lambda_1 + \lambda_3 &= 0. \end{aligned}$$

Hence, the vectors are linearly independent and form a basis of $\text{Im } f$.

$$\text{rank } f = \dim \text{Im } f = 3.$$