
Chapter 5

Vector spaces

In this chapter K represents a field.

5.1 Vector space

Definition 5.1.1 Let K be a commutative field (usually it is R or C ) and let E be a

non-empty set with an internal composition law called addition and denoted ”+”

+ : E × E → E

(x, y) 7→ x+ y

and an external composition law called multiplication by a scalar and denoted by ”·”

· : K× E → E

(λ, x) 7→ λ · y

Definition 5.1.2 A vector space on the field K or a K- vector space is a triplet (E,+, .)

such that:

1. (E, +) is a commutative group, where the neutral element is denoted by 0E and

the symmetric of an element x of E will be denoted −x.
2.∀α, β ∈ K, ∀x ∈ E,

α · (β · x) = (αβ) · x

3. ∀α, β ∈ K, ∀x ∈ E,
(α+ β) · x = α · x+ β · x

4. ∀α ∈ K, ∀x, y ∈ E,
α · (x+ y) = (α · x) + (α · y)

5. 1K · x = x.
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Remark 5.1.3 1. The elements of E are called vectors and those of K scalars.

2. “vector space over K”, means K-vector space.

Example 5.1.4 - (R,+, ·) is an R- vector space,
- (C,+, ·) is an C- vector space,
- If we consider Rn with the following two operations

(+) : Rn × Rn → Rn

((x1, x2, ..., xn) , (y1, y2, ..., yn)) → (x1 + y1, x2 + y2, ..., xn + yn)

and
(·) : R× Rn → Rn

(λ, (x1, x2, ..., xn)) → (λx1, λx2, ..., λxn)

we can easily show that (Rn,+, .) is an R- vector space.

Example 5.1.5 The set E = F (R,R) of functions from R to R endowed with the usual
laws, addition of fuctions and multiplication of the functions by a real number:

(f + g)(x) = f(x) + g(x)

and

(α.f)(x) = α.f(x),

is a R - vector space.

Proposition 5.1.6 If E is K- vector space, then we have the following properties:
(1) ∀x ∈ E, 0K.x = 0E ,

(2) ∀x ∈ E, (−1K).x = −x
(3) ∀λ ∈ K, λ0E = 0E

(4) ∀λ ∈ K, ∀x, y ∈ E, λ.(x− y) = λ.x− λ.y
(5) ∀λ ∈ K, ∀x ∈ E, λ.x = 0E ⇔ λ = 0K or x = 0E.

5.1.1 Vector subspace

In this part, E will denote a K-vector space.

Definition 5.1.7 A subset F of E is called a vector subspace of E if

(i) ∅ 6= F ⊂ E,
(ii) F is a K-vector space with respect to the same laws.
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Remark 5.1.8 1) When (F,+, .) is a vector subspace of E then 0E ∈ F .
2) If 0E /∈ F . then (F,+, .) cannot be a vector subspace of E.

Theorem 5.1.9 Let F be a nonempty subset of E, the following assertions are equival-

ent :

(1) F is a vector subspace of over K,
(2) F is stable for addition and for multiplication by a scalar .i.e

∀λ ∈ K, ∀x, y ∈ F , λx ∈ F and x+ y ∈ F.

(3) ∀λ, µ ∈ K, ∀x, y ∈ F , λx+ µy ∈ F .

Theorem 5.1.10 A subset F of E is called a vector subspace of E if the following

condition hold :

(i) 0E ∈ F ,
(ii) ∀x, y ∈ F , x+ y ∈ F ,
(ii) ∀α ∈ K, ∀x ∈ F , αx ∈ F .

Example 5.1.11 (1) E and 0E are vector subspaces of E.

(2) F =
{

(x, y) ∈ R2/x+ y = 0
}
is a vector subspace of R2 over R because ,

- 0E = 0R2 = (0, 0) ∈ F ⇒ F 6= ∅
- ∀ (x, y), (x′, y′) ∈ F , ∀α, β ∈ R : α (x, y) +β (x′, y′) ∈ F , i.e (αx+ βx′, αy + βy′) ∈

F , we have

(x, y) ∈ F ⇒ x+ y = 0 and (x′, y′) ∈ F ⇒ x′ + y′ = 0

αx+ βx′ + αy + βy′ = α (x+ y) + β (x′ + y′) = α (0) + β (0) = 0

Then α (x, y) + β (x′, y′) ∈ F , so F is vector subspace of R2.
(3).The set F =

{
(x, y) ∈ R2/x− y + 1 = 0

}
is not a vector subspace of R2 because

the zero vector 0R2 does not belong to F .

5.1.2 Intersection and union of vector subspaces

Proposition 5.1.12 The intersection of two vector sub-spaces is a vector subspace.

Proof. Consider F1 and F2 two vector subspaces of E. First 0E ∈ F1, because F1 is
a vector subspace of E. Similarly, 0E ∈ F2. Thus, 0E ∈ F1 ∩F2 and F1 ∩F2 is therefore
not empty. Given x, y ∈ F1 ∩ F2 and α, β ∈ R, then we have αx+ βy ∈ F1 since F1 is a
vector subspace of E. Similarly, αx+ βy ∈ F2. Thus, αx+ βy ∈ F1 ∩F2. It follows that
F1 ∩ F2 is a vector subspace of E.
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Lemma 5.1.13 The intersection ∩ni=1Fi of n vector subspaces of a vector space E (n ≥
2, n ∈ N) is a vector subspace of E.

Remark 5.1.14 The union of two vector subspaces is not necessarily a vector subspace.

Example 5.1.15 Let F1 =
{

(x, y) ∈ R2, x = 0
}
and F2 =

{
(x, y) ∈ R2, y = 0

}
two

vector subspaces in R2 , F1 ∪ F2 is not a vector subspace, because u1 = (0, 1) ∈ F1,

u2 = (1, 0) ∈ F2 and u1 + u2 = (1, 1) /∈ F1 ∪ F2.

5.1.3 Sum of two vector subspaces

Definition 5.1.16 Let E1, E2 be two vector subspaces of a K-vector space E, we call
the sum of the two vector subspaces E1 and E2 that we denote E1+E2 the following set:

E1 + E2 = {x ∈ E : ∃x1 ∈ E1,∃x2 ∈ E2 such that x = x1 + x2} .

Example 5.1.17 Let E1 =
{

(x, y) ∈ R2, x = 0
}
and E2 =

{
(x, y) ∈ R2, y = 0

}
vector

subspaces in R2, if (x, y) ∈ R2, then

(x, y) = (x, 0)
∈E1

+ (0, y)
E2

,

so (x, y) ∈ E1 +E2, hence E1 +E2 = R2 .

Proposition 5.1.18 The sum of two vector subspaces E1 and E2 (of the same K -vector
space) is a vector subspace of E containing E1 ∪ E2, i.e., E1 ∪ E2 ⊂ E1 +E2.

5.1.4 Direct sum of two vector subspaces

Definition 5.1.19 Let E1 and E2 be two vector subspaces of the same K-vector space
E. We will say that the sum: E1+E2 of two vector subspaces is direct if E1∩E2 = {0E}.
We write E1 ⊕ E2.

Proposition 5.1.20 Let E1 and E2 be two vector subspaces of the same K-vector space
E. The sum E1 + E2 is direct if ∀x ∈ E1 + E2, there exists a single vector x1 ∈ E1, a
single vector x2 ∈ E2, such that x = x1 + x2.

Example 5.1.21 Let F1 =
{

(x, y, z) ∈ R3 : x = 0
}
and F2 =

{
(x, y, z) ∈ R3 : y = z = 0

}
be two vector subspaces in R3 .

- Let (x, y, z) ∈ R3, then (x, y, z) = (0, y, z)
∈F1

+ (x, 0, 0)
∈F2

, so (x, y, z) ∈ F1 + F2, hence

F1 + F2 = R3.
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- Let (x, y, z) ∈ F1 ∩ F2, then (x, y, z) ∈ F1 and (x, y, z) ∈ F2, this means that x = 0

and y = z = 0, then (x, y, z) = 0R3, i.e. F1 ∩ F2 = {0R3}.
Finally, we conclude that R3 = F1 ⊕ F2.

5.1.5 Generating, free, and basis families

Linear combination

Definition 5.1.22 For n ∈ N∗, A linear combination of vectors u1, u2, ..., un of a K-
vector space E, is a vector which can be written V =

n∑
i=1

λiui. The elements λ1, λ2, ..., λn ∈

K are called coeffi cients of the linear combination.

Example 5.1.23 In R2, the vector U = (9, 8) is a linear combination of vectors (1, 2)

and (3, 1) because

U = (9, 8) = 3(1, 2) + 2(3, 1)

Remark 5.1.24 • If F is a vector subspace of E, and u1, u2, ..., un ∈ F , then any linear
combination of u1, u2, ..., un is in F .

• Let u1, u2, ..., un, n vectors of a K-vector space E. One can always write 0E as a

linear combination of these vectors, because it suffi ces to take all zero coeffi cients of the

linear combination.

• If n = 1, then V = λ1u1 we say that V is collinear with u1..

Generating (Spanning) family

Definition 5.1.25 We consider a nonempty family A = (u1, u2, ..., un) of vectors of a

K-vector space E with n ∈ N∗. We say that A generates (spans) E, or that it is generator
of E if and only if

Span {u1, u2, ..., un} = E.

In other words, any vector of E is a linear combination of the elements of A.

Notation 4 Given the vectors u1, u2, ..., un of K-vector space E, we denote Span(u1, u2, ..., un)

or 〈u1, u2, ..., un〉 the set of linear combination of u1, u2, ..., un . So we write :

〈u1, u2, ..., un〉 = Span {u1, u2, ..., un} =

{
u ∈ E/∃λ1, λ2, ..., λn ∈ K;u =

n∑
i=1

λiui

}
.

Example 5.1.26 A = {u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1)} generates R3, because
for all U = (x, y, z) ∈ R3 we have:

(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).
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Example 5.1.27 In R2, we consider the vectors u1 = (1, 1), u2 = (1, 0) and u3 =

(0,−1). Let us check that the family (u1, u2, u3) generates R2. Let X = (x, y) ∈ R2, we
seek if there exists (λ1, λ2, λ3) ∈ R2 such that X = λ1u1 + λ2u2 + λ3u3.

X = (x, y) = λ1u1 + λ2u2 + λ3u3 ⇔
{
x = λ1 + λ2

y = λ1 − λ3

⇔
{

λ2 = x− λ1
λ3 = λ1 − y.

We therefore obtain X = λ1u1 + (x− λ1)u2 + (λ1 − y)u3, with λ1 ∈ R. So (u1, u2, u3)

is a generating family of R2.

Free families

Definition 5.1.28 We consider a nonempty family A = (u1, u2, ..., un) of E with n ∈
N∗.We say that A is free if and only if the null vector 0E is a linear combination of

elements of A unique way. In other words:

∀λ1, λ2, ..., λn ∈ K,
n∑
i=1

λiui = 0E ⇒ λ1 = λ2 = ... = λi = 0K.

Example 5.1.29 The set A = {u1 = (1, 0, 1), u2 = (0, 2, 2), u3 = (3, 7, 1)} is free.
Indeed, let λ1, λ2, λ3 ∈ R, we have

λ1(1, 0, 1) + λ2(0, 2, 2) + λ3(3, 7, 1) = 0R3 ⇒ λ1 = λ2 = λ3 = 0R.

Remark 5.1.30 We can use the following expressions:
• If A is free then we also say that the vectors u1, u2, ..., un are linearly independent.
• If A is not free, we say that A is linked.

• A family of a single vector is free if and only if this vector is non-zero.

Example 5.1.31 In R2, the vector u = (2, 1) is not collinear with v = (1, 1), that is to

say is free.

Indeed: let (λ1, λ2) ∈ R2, such that

λ1u+ λ2v = 0R2 ⇔
{

2λ1 + λ2 = 0

λ1 + λ2 = 0
⇒ λ1 = λ2 = 0R.

The unique solution found is the trivial solution (0, 0), the family (u, v) is therefore

free.
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Example 5.1.32 In R2, the vectors u = (1, 2), v = (3, 4) and w = (5, 6) are linearly

dependent.

Indeed: let (λ1, λ2, λ3) ∈ R3, such that

λ1u+ λ2v + λ3w = 0R2 ⇔
{

λ1 + 3λ2 + 5λ3 = 0

2λ1 + 4λ2 + 6λ3 = 0

⇐⇒
{
λ1 + 3λ2 + 5λ3 = 0

λ1 + 2λ2 + 3λ3 = 0

⇐⇒
{
λ2 + 2λ3 = 0

λ1 + 2λ2 + 3λ3 = 0

⇐⇒
{
λ2 = −2λ3

λ1 = λ3.

So, this system admits at least one non-trivial solution, for example:

λ1 = 1, λ2 = −2 and λ3 = 1.

Since u− 2v + w = 0R2, the family {u, v, w}is linearly dependent

Basis

Definition 5.1.33 Let E be a vector space over a field K. A family

A = (u1, u2, ..., un)

is called a basis of E if it is linearly independent and generating.

Equivalently, A is a basis of E if and only if every vector u ∈ E can be written in a

unique way as a linear combination of the vectors in A :

∀u ∈ E, ∃! (λ1, λ2, ..., λn) ∈ Kn, such that u =
n∑
i=1

λiui.

The scalars λ1, λ2, ..., λn are called the coordinates of u in the basis A.

Example 5.1.34 • B1 = {(1, 0), (0.1)} is the canonical basis of R2.
• B2 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is the canonical basis of R3.
• B3 = {(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1)} is the canonical basis of Rn.

Example 5.1.35 Consider the vector space of real polynomials of degree less than or
equal to 2.

R2[x] =
{
P (x) = a+ bx+ cx2 / a, b, c ∈ R

}
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We claim that the family

B =
{
P1 (x) = 1, P2 (x) = x, P3 (x) = x2

}
is a basis of R2[x].

In fact,

i) Linear independence
Let α, β, γ ∈ R, suppose that

∀x ∈ R, αP1 (x) + βP2 (x) + γP3 (x) = 0.

This is equivalent to

∀x ∈ R, α+ βx+ γx2 = 0.

(Since a polynomial that is identically zero must have all coeffi cients equal to zero, we

obtain.

α = β = γ = 0

Hence,
{

1, x, x2
}
is a linearly independent (free) family.

ii) Generating property

Let P ∈ R2[x], by definition, there exist a, b, c ∈ R, such that

∀x ∈ R, P (x) = a+ bx+ cx2 = aP1 (x) + bP2 (x) + cP3 (x) ,

or equivalently,

P = aP1 + bP2 + cP3.

Therefore,
{

1, x, x2
}
generates R2[x].

Example 5.1.36 Let

u1 = (1, 1), u2 = (1, 0), u3 = (0,−1)

be vectors in R2. As seen in the previous example, the family (u1, u2, u3) is a generating

family of R2 However, this family is linearly dependent (linked), since

u1 + u3 = u2,

which yields a non-trivial linear relation between the vectors. Therefore, (u1, u2, u3) is

not a basis of R2. On the other hand, the family (u1, u2) is both linearly independent

and generating in R2. Consequently, (u1, u2) is a basis of R2.
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Example 5.1.37 Let F be the subset of R3 defined by:

F =
{

(x, y, z) ∈ R3 / x = −2y + z
}

F is therefore a vector subspace of R3 generated by the vectors

u = (−2, 1, 0) and v = (1, 0, 1) .

Indeed

F =
{

(x, y, z) ∈ R3 / x = −2y + z
}

=
{

(−2y + z, y, z) / (y, z) ∈ R2
}

=
{
y (−2, 1, 0) + z (1, 0, 1) / (y, z) ∈ R2

}
= Span {(−2, 1, 0) , (1, 0, 1)} = 〈(−2, 1, 0) , (1, 0, 1)〉

Furthermore, these vectors form a free family so (u, v) is a basis of F .

Proposition 5.1.38 Let E be a vector space. If

{e1, e2, ..., en} and {u1, u2, ..., um}

are two bases of E, then n = m.

Remark 5.1.39 If a vector space E admits a basis, then all the bases of E have the

same number of elements, this number does not depend on the basis but it only depends

on the space E. This common number is called the dimension of E.

5.1.6 Dimension of vector spaces

Definition 5.1.40 Let E be a vector space over a field K , and let B = {e1, e2, ..., en}
be a basis of E, The dimension of E, denoted dim (E) , is defined as

dim(E) = Card(B),

that is, the number of elements of the basis B.

Example 5.1.41 Let

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

The family {e1, e2, e3} is a basis of R3, called the canonical (standard) basis.
Therefore,

dim(R3) = Card ({e1, e2, e3}) = 3.
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Example 5.1.42 In the vector space R2[x], the family
{

1, x, x2
}
is a basis. Therefore,

dim (R2[x]) = Card
{

1, x, x2
}

= 3.

Theorem 5.1.43 Let E be a vector space of dimension n, then :

1) Characterization of a basis: A family {e1, e2, ...,en} of n vectors in E is the basis

of E if and only if it is either: generating, or linearly independent (free). That is,

{e1, e2, ...,en} is abasis⇔ it is generating ⇔ it is free.

2) Families with more than n vectors: Let {e1, e2, ..., ep} be p vectors in E, with

p > n, then :

• The family cannot be free (it is linearly dependent).
• If the family is generating, then there exists a subset of n vectors among them that

forms a basis of E.

3) Families with fewer than n vectors: Let {e1, e2, ..., ep} be p vector in E, with p < n

, then :

• The family cannot be generating (it does not span E).
• If the family is free, it is possible to find (n−p) additional vectors {ep+1, ep+2, ...,en}

in E such that {e1, e2, ..., ep+1, ...,en} forms a basis for E.
4) If F is a vector subspace of E : then dimF ≤ n, and moreover dimF = n ⇔

F = E.

Proposition 5.1.44 Let E be a finite-dimensional vector space, and let F1, F2 be sub-

spaces of E, then:

dim(F1 + F2) = dimF1 + dimF2 − dim(F1 ∩ F2),

where F1 + F2 = {u+ v / u ∈ F1, v ∈ F2} is the sum of subspaces and F1 ∩ F2 is their
intersection.

Exercise 5.1.45 Consider the subsets of R3:

E =
{

(x, y, 0) ∈ R3 / x, y ∈ R
}
and F = {(x, 0, x) / x ∈ R} .

1. Show that E and F are vector subspaces of R3 over R.
2. Calculate dim(E) and dim(F ).

3. Determine E ∩ F .
4. Is R3 = E ⊕ F?
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Solution 5.1.46 1. Show that E and F are vector subspaces of R3 over R.
• To show that E is a vector subspace, we verify the following conditions:

(a) Non-empty: The zero vector (0, 0, 0) ∈ E (taking x = 0, y = 0).

(b) Closed under addition: Let u = (x1, y1, 0) and v = (x2, y2, 0) be in E. Then:

u+ v = (x1 + x2, y1 + y2, 0) ∈ E.

(c) Closed under scalar multiplication: Let u = (x, y, 0) ∈ E and λ ∈ R. Then:

λu = (λx, λy, 0) ∈ E.

Thus, E is a vector subspace.

• For F :

(a) Non-empty: The zero vector (0, 0, 0) ∈ F (taking x = 0).

(b) Closed under addition: Let u = (x1, 0, x1) and v = (x2, 0, x2) be in F . Then:

u+ v = (x1 + x2, 0, x1 + x2) ∈ F.

(c) Closed under scalar multiplication: Let u = (x, 0, x) ∈ F and λ ∈ R. Then:

λu = (λx, 0, λx) ∈ F.

Thus, F is also a vector subspace.

2. Calculate dim(E), dim(F )

(a) To find the dimension of E, we have:

E = {(x, y, 0) : x, y ∈ R}
= {x(1, 0, 0) + y(0, 1, 0) : x, y ∈ R}
= span{(1, 0, 0), (0, 1, 0)}.

The vectors (1, 0, 0) and (0, 1, 0) are linearly independent and therefore form a basis

for E. Thus, we conclude that the dimension of E is: dim(E) = 2.

(b) To find the dimension of F :The vector(1, 0, 1) spans F since any vector in F can

be expressed as x(1, 0, 1) for some x. Thus, we have:

dim(F ) = 1.

3. To find E ∩ F , we note that:

(x, y, z) ∈ E ∩ F ⇒ (x, y, z) ∈ E and (x, y, z) ∈ F.
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This implies:

(x, y, z) ∈ E ⇒ z = 0, (x, y, z) ∈ F ⇒ y = 0 and z = x.

Thus, the intersection is:

E ∩ F = {(0, 0, 0)}.

4. The dimension of E + F can be calculated using the formula:

dim(E + F ) = dim(E) + dim(F )− dim(E ∩ F ).

Substituting the dimensions, we find:

dim(E + F ) = 2 + 1− 0 = 3.

Since dim
(
R3
)

= 3 and dim(E + F ) = 3, we conclude that E + F = R3. Furthermore,
since E + F = R3 and from Question 3 we have E ∩ F = {(0, 0, 0)}, we conclude that
R3 = E ⊕ F .
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5.2 Linear applications

5.2.1 Definitions and examples

Definition 5.2.1 (linear map) Let E and F be two vector spaces over a field K.
A map f : E → F is called linear if it satisfies both of the following conditions:

∀x, y ∈ E, f(x+ y) = f(x) + f(y),

∀x ∈ E, ∀λ ∈ K, f(λx) = λf(x),

Equivalently,

∀x, y ∈ E, λ ∈ K, f(λx+ y) = λf(x) + f(y).

Remark 5.2.2 The set of linear maps of E to F is denoted by L (E, F ) .

Example 5.2.3 The map f defined by

f : R3 → R2,
(x, y, z)→ f(x, y, z) = (2x+ y, y − z)

,

is a linear map.

Indeed, let (x, y, z), (x́, ý, ź) ∈ R3 and λ ∈ R. Then

f [(x, y, z) + (x́, ý, ź)] = f (x+ x́, y + ý, z + ź)

= (2 (x+ x́) + (y + ý) , (y + ý)− (z + ź))

= (2x+ 2x́+ y + ý, y + ý − z − ź)

= ((2x+ y) + (2x́+ ý) , (y − z) + (ý − ź))

= (2x+ y, y − z) + (2x́+ ý, ý − ź)

= f (x, y, z) + f (x́, ý, ź) ,

and

f (λ (x, y, z)) = f (λx, λy, λz)

= (2λx+ λy, λy − λz)

= (λ (2x+ y) , λ (y − z))

= λ (2x+ y, y − z)

= λf (x, y, z) .



5. Vector spaces 109

Example 5.2.4 The map f : R2 → R3defined by

f(x, y) =
(
x2, x+ y, 1

)
is not linear.

Indeed,

f ((1, 0) + (0, 0)) = f (1, 0) = (1, 1, 1) ,

whereas

f(1, 0) + f(0, 0) = (1, 1, 1) + (0, 0, 1) = (1, 1, 2) .

hence,

f ((1, 0) + (0, 0)) 6= f(1, 0) + f(0, 0).

Proposition 5.2.5 If f is a linear map from E to F , then :

1.f(0E) = 0F .

2. f(−x) = −f(x).

3. If V1 is a subspace of E , then f(V1) is a subspace of F .

4. If W1 is a subspace of F , then f−1(W1) is a subspace of E.

5. The composition of two linear maps is a linear map.

Proposition 5.2.6 Let E and F be vector spaces over K, and let f , g ∈ L (E, F ). If

E is finite-dimensional of dimension n and {e1, e2, ..., en} is basis of E, then

∀k ∈ {1, 2, ..., n} , f(ek) = g(ek)⇔ ∀x ∈ E, f(x) = g(x).

Proof. The implication (⇐) is obvious.

For (⇒), since {e1, e2, ..., en} generates E, for any x ∈ E there exist scalars λ1, λ2, ..., λn ∈
K such that

x =
n∑
i=1

λie.

Since f and g are linear maps,

f (x) =
n∑
i=1

λif (ei) , g (x) =
n∑
i=1

λig (ei) .

If f (ei) = g (ei) for all i, then f (x) = g (x)for all x ∈ E.

5.2.2 Linear maps and dimension

Let f : E → F be a linear map.
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The kernel of a linear map

Definition 5.2.7 The kernel (or null space) of f , denoted by ker f , is the set of all

vectors x ∈ E such that f(x) = 0F (the zero vector of F ):

ker f = {x ∈ E / f(x) = 0F } = f−1 ({0F })

The image of a linear map

Definition 5.2.8 The image of f , denoted by Im f , is the set of all vectors in F of the

form f (x) for some x ∈ E:

Im f = {f(x) / x ∈ E} = f (E)

Proposition 5.2.9 Let f : E → F be a linear map. Then:

1. ker f is a subspace of E.

2. Im f is a subspace of F .

3. f is injective if and only if ker f = {0E} .
4. f is surjective if and only if Im f = F .

Example 5.2.10 Consider the map f : R3 → R2 defined by

f(x, y, z) = (x+ y, z).

This map is not injective but is surjective.

• Injectivity

ker f = {(x, y, z) ∈ R3 / (x+ y, z) = (0, 0)}

= {(x, y, z) ∈ R3 / x+ y = 0, z = 0}

= {(x, y, z) ∈ R3 / y = −x, z = 0}

= {(x,−x, 0) / x ∈ R}

Since

(1,−1, 0) ∈ ker f ⇒ ker f 6= {0R3} .

Hence, f is not injective.

• Surjectivity.

Im f =
{

(x+ y, z) / (x, y, z) ∈ R3
}

= {x(1, 0) + y(1, 0) + z(0, 1) / x, y, z ∈ R} .
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Thus,

Im f = span {(1, 0), (0, 1)} = R2,

and f is surjective.

Proposition 5.2.11 Let f : E → F be a linear map, with E of finite dimension. Then:

dimE = dim ker f + dim Im f

The rank of a linear map

Definition 5.2.12 The rank of a linear map f is the dimension of its image :

rankf = dim Im f

Example 5.2.13 Find ker f , Im f and rankf for the map f : R4 → R3 defined by

f (x, y, z, t) = (x− y, z + t, x− y + z)

Kernel

ker f =
{

(x, y, z, t) ∈ R4 / (x− y, z + t, x− y + z) = (0, 0, 0)
}

From x− y = 0, we get x = y.

From x− y + z = 0, we get z = 0, hence t = 0.

Thus,

ker f = {(x, x, 0, 0) / x ∈ R} = span{(1, 1, 0, 0)}.

Image

Im f = {(x− y, z + t, x− y + z) / x, y, z, t ∈ R}

= {(x− y).(1, 0, 1) + t.(0, 1, 0) + z(0, 1, 1) / x, y, z, t ∈ R}

= span {(1, 0, 1), (0, 1, 0), z(0, 1, 1)} .

To check linear independence, let λ1, λ2, λ3 ∈ R:

λ1(1, 0, 1) + λ2(0, 1, 0) + λ3(0, 1, 1) = (0, 0, 0)

⇒ (λ1, λ2 + λ3, λ1 + λ3) = (0, 0, 0)

⇒ λ1 = λ1 = λ1 = 0.

Hence, the vectors are linearly independent and form a basis of Im f .

rankf = dim Im f = 3.


