Chapter 5
Vector spaces

In this chapter K represents a field.

5.1 Vector space

Definition 5.1.1 Let K be a commutative field (usually it is R or C ) and let E be a

non-empty set with an internal composition law called addition and denoted "+”

+: ExFE—=F
(z,y) —z+y

”»

and an external composition law called multiplication by a scalar and denoted by

KxE—FE
(Nz)— Ay
Definition 5.1.2 A wvector space on the field K or a K- vector space is a triplet (E,+,.)
such that:
1. (E, +) is a commutative group, where the neutral element is denoted by Og and

the symmetric of an element x of E will be denoted —.
2Va,8 €K,V e E,

a-(B-2)=(af)
3. Va,B €K, Vx € F,
(a+B) z=a-z+p x
4. YVaeK, Vx,y € F,
a-(r+y)=(a-z)+(a-y)

5. g -x = .

96
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Remark 5.1.3 1. The elements of E are called vectors and those of K scalars.

2. “vector space over K”, means K-vector space.

Example 5.1.4 - (R, +,-) is an R- vector space,
- (C,+,+) is an C- vector space,

- If we consider R™ with the following two operations

(+): R*xR" —R"
((:Elaan ,.'En) ) (y17y27 7yn)) - (:L'l + Y1, T2 + Y2, -y Ty + yn)

and
(): RxR” L R?
(A, (21,22, oy ) — (A1, A2, ..oy ATy

we can easily show that (R™,+,.) is an R- vector space.

Example 5.1.5 The set E = F(R,R) of functions from R to R endowed with the usual

laws, addition of fuctions and multiplication of the functions by a real number:

(f+9)(z) = f(z) + g(x)

and
(a.f)(@) = a.f(z),

18 a R - vector space.

Proposition 5.1.6 If FE is K- vector space, then we have the following properties:
(1)Vz € E, Ogx.x =0g ,
(2)Vzx € E, (—1g).x = —x
(3) VA €K, N0g =0g
(4)VAeK,Vz,y e E, A(x —y) = Az — Ay
(5)VAeK, Ve e E, \\x =0 & A=0k orz =0g.

5.1.1 Vector subspace

In this part, £ will denote a K-vector space.

Definition 5.1.7 A subset F' of E is called a vector subspace of E if
(1) 0 #F C E,

(ii) F is a K-vector space with respect to the same laws.
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Remark 5.1.8 1) When (F,+,.) is a vector subspace of E then O € F.
2) If 0g ¢ F. then (F,+,.) cannot be a vector subspace of E.

Theorem 5.1.9 Let F' be a nonempty subset of E, the following assertions are equival-
ent :
(1) F is a vector subspace of over K,

(2) F is stable for addition and for multiplication by a scalar .i.e
VieK, Ve,ye F, \e e Fandx+y € F.
(B)VA\peK, Ve,y e F, e +puy € F.

Theorem 5.1.10 A subset F' of E is called a vector subspace of E if the following
condition hold :

(i) Op € F,

(ii) Ve,y € F, x+y € F,

(ii))Va e K,V € F, ax € F.

Example 5.1.11 (1) E and Og are vector subspaces of E.
(2) F = {(z,y) € R*/z +y = 0} is a vector subspace of R* over R because ,
-0 =0r2 =(0,0) € F=F #10
-V(z,y), (',y) € F,Va,8 e R: a(x,y)+8(z,y) € F, i.e (ax+ B2, ay + YY) €

F', we have

(z,y)eEF=az+y=0and (2',y)eF=2"+y =0
ar+ Bz’ +ay+ Py =a(z+y)+B (' +y)=a(0)+5(0)=0

Then a (z,y) + B (2',y') € F, so F is vector subspace of R2.
(3).The set F = {(z,y) € R*/z —y+1 =0} is not a vector subspace of R* because

the zero vector Op2 does not belong to F'.

5.1.2 Intersection and union of vector subspaces

Proposition 5.1.12 The intersection of two vector sub-spaces is a vector subspace.

Proof. Consider F7 and F5 two vector subspaces of E. First Og € F}, because F} is
a vector subspace of F. Similarly, 0 € F5. Thus, 0 € Fy N F, and Fy N Fy is therefore
not empty. Given z, y € F1 N Fy and o, § € R, then we have az + Sy € F} since F] is a
vector subspace of F. Similarly, ax + Sy € F>. Thus, az + By € F1 N Fs. It follows that
1N Fy is a vector subspace of E. m
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Lemma 5.1.13 The intersection N}'_ F; of n vector subspaces of a vector space E (n >

2, n € N) is a vector subspace of E.
Remark 5.1.14 The union of two vector subspaces is not necessarily a vector subspace.

Example 5.1.15 Let Fi = {(z,y) € R®, 2 =0} and F» = {(z,y) e R*,y =0} two
vector subspaces in R? | Fy U Fy is not a vector subspace, because u; = (0,1) € Fy,
Ug = (1,0) € Fy and up +us = (1,1) §‘é Fi U Fy.

5.1.3 Sum of two vector subspaces

Definition 5.1.16 Let E1, Fo be two vector subspaces of a K-vector space E, we call
the sum of the two vector subspaces E1 and Ey that we denote E1+ Ey the following set:

E1+ Ey={z € E: 3z € F1,3x9 € Ey such that x = x1 + z2} .

Example 5.1.17 Let By = {(z,y) € R%, 2 =0} and E> = {(z,y) € R?,y =0} wvector
subspaces in R?, if (x,y) € R2, then

(x,y) - (.%',0) + (Oa y),
€k E

so (x,y) € By +Es, hence By +Ey = R? .

Proposition 5.1.18 The sum of two vector subspaces E1 and Es (of the same K -vector

space) is a vector subspace of E containing Fy U Ea, i.e., By U FEy C Ey +Es.

5.1.4 Direct sum of two vector subspaces

Definition 5.1.19 Let E1 and Eo be two vector subspaces of the same K-vector space
E. We will say that the sum: Ey+ Esy of two vector subspaces is direct if E1NEy = {0g}.
We write Eq ® Es.

Proposition 5.1.20 Let E1 and Es be two vector subspaces of the same K-vector space
E. The sum Eq1 + Es is direct if Vo € E1 + Es, there exists a single vector 1 € Fq, a

single vector xo € Fa, such that x = x1 + xo2.

Example 5.1.21 Let F} = {(z,y,2) € R® : 2 =0} and F> = {(z,y,2) € R® : y = 2 = 0}
be two vector subspaces in R3 .

- Let (SC,y,Z) € Rg} then (.T,y,Z) = (O7y7z) + (13,0,0), S0 (.T,y,Z) €+ FZ; hence
S (S
Fi + Fy = R3.
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- Let (z,y,2) € F1 N Fy, then (z,y,z) € F1 and (x,y,2) € Fy, this means that x = 0
and y =z =0, then (x,y,z) = Ogs, i.e. F1 N Fy={0ps3}.
Finally, we conclude that RE=F @ F,.

5.1.5 Generating, free, and basis families
Linear combination

Definition 5.1.22 For n € N*, A linear combination of vectors ui,us,...,un of a K-
n

vector space E, is a vector which can be written V=Y Nju;. The elements A1, Az, ..., \p, €
i=1

K are called coefficients of the linear combination.

Example 5.1.23 In R?, the vector U = (9,8) is a linear combination of vectors (1,2)

and (3,1) because
U =(9,8) = 3(1,2) +2(3,1)

Remark 5.1.24 e If F' is a vector subspace of E, and u1,usg, ...,uy € F, then any linear
combination of ui,us,...,u, is in F.

o Let uy,Us, ..., Uy, n vectors of a K-vector space EE. One can always write Op as a
linear combination of these vectors, because it suffices to take all zero coefficients of the
linear combination.

o [fn=1, then V = \juy we say that V is collinear with uy..

Generating (Spanning) family

Definition 5.1.25 We consider a nonempty family A = (u1,usg, ..., u,) of vectors of a
K-vector space E withn € N*. We say that A generates (spans) E, or that it is generator
of E if and only if

Span {uy,ug,...,up} = E.

In other words, any vector of E is a linear combination of the elements of A.

Notation 4 Given the vectors uy, us, ..., u, of K-vector space E, we denote Span(ui,ug, ..., uy)

or (ui,ug, ..., up) the set of linear combination of uy,ua, ..., u, . So we write :
n
(U1, U2, ..., Up) = Span{u1, ug, ..., un} = {u € E/TN, Ny A €Ku = Z/\lul} )
i=1
Example 5.1.26 A = {u; = (1,0,0),us = (0,1,0),u3 = (0,0,1)} generates R3, because
for all U = (z,y, 2) € R® we have:

(z,y,2) = 2(1,0,0) +y(0,1,0) 4+ 2(0,0,1).
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Example 5.1.27 In R%, we consider the vectors u1 = (1,1), uz = (1,0) and uz =
(0,—1). Let us check that the family (uy,us2,u3) generates R2. Let X = (z,y) € R2, we
seek if there exists (A1, Ao, A3) € R? such that X = A\ui + Aaug + Agus.

rT=A+A
X:(xay):)\lu1+)\2u2+)\3U3 = 1 2
y=A1— A3
)\2:33*)\1
<~
A3 = A1 —y.

We therefore obtain X = Ajui + (z — A1) ug + (A1 — y) ug, with A1 € R. So (u1,uz,u3)

is a generating family of R2.

Free families

Definition 5.1.28 We consider a nonempty family A = (u1,us, ..., un) of E with n €
N*.We say that A is free if and only if the null vector O is a linear combination of

elements of A unique way. In other words:

YA A2, e €K, D> Ay =0 = A = dp = ... = \; = Ok.
i=1
Example 5.1.29 The set A = {u; = (1,0,1),u2 = (0,2,2),us = (3,7,1)} is free.
Indeed, let A1, A2, A3 € R, we have

)\1(1,0, 1) + )\2(0,2,2) + )\3(3, 7, 1) =0ps = A1 = Ay = A3 = OR.

Remark 5.1.30 We can use the following expressions:
o If A is free then we also say that the vectors uy, us, ..., uy are linearly independent.
o If A is not free, we say that A is linked.

e A family of a single vector is free if and only if this vector is non-zero.

Example 5.1.31 In R2, the vector u = (2,1) is not collinear with v = (1,1), that is to
say is free.
Indeed: let (A1, \2) € R?, such that
2A01+ A2 =0
)\1U+A27J_0R2<:>{ )\1+>\2:O :>)\1:A2:0R.
The unique solution found is the trivial solution (0,0), the family (u,v) is therefore

free.
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Example 5.1.32 In R?, the vectors u = (1,2), v = (3,4) and w = (5,6) are linearly
dependent.
Indeed: let (M1, A2, A3) € R3, such that

AM+32+5M3=0
21 + 44X +6X3 =0
A1 +3X+5A3 =0

AU+ A0+ Azw =0pe & {

<~
Al +2X+3X3=0
Ao +2X3 =0

<~
A1 +2X+ 323 =0
Ao = —2)3

<~
Al = As.

So, this system admits at least one non-trivial solution, for example:
)\1:1, /\2:—2 and)\gzl.

Since u — 2v + w = Oz, the family {u,v, w}is linearly dependent

Basis

Definition 5.1.33 Let E be a vector space over a field K. A family
A = (u1,ug, ..., up)

is called a basis of E if it is linearly independent and generating.
Equivalently, A is a basis of E if and only if every vector u € E can be written in a

unique way as a linear combination of the vectors in A :

n
Vu € E, A (A1, A2y ...y An) € K", such that u = Z it
i=1

The scalars A1, Az, ..., An are called the coordinates of u in the basis A.

Example 5.1.34 o By = {(1,0),(0.1)} is the canonical basis of R2.
e By ={(1,0,0),(0,1,0),(0,0,1)} is the canonical basis of R3.
e B3 ={(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)} is the canonical basis of R™.

Example 5.1.35 Consider the vector space of real polynomials of degree less than or

equal to 2.
Ro[z] = {P(z) = a+bx +c2® / a,b,c € R}
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We claim that the family
B={Pi(z)=1, P(z) =z, P3(z) = 2°}

is a basis of Ro[z].
In fact,

i) Linear independence

Let o, B, v € R, suppose that
Ve e R, aP; (LL’) + 6P, (m) + ~vPs (ac) = 0.

This is equivalent to
Vz €R, a+ Bz + vz =0.

(Since a polynomial that is identically zero must have all coefficients equal to zero, we

obtain.

Hence, {1, T, 332} is a linearly independent (free) family.
ii) Generating property
Let P € Ro[z], by definition, there exist a, b, ¢ € R, such that

Vr €R, P(z) = a+bx +cx® = aPy (z) + bPy () + cPs (2),

or equivalently,
P = CLPl + bP2 + CP3.

Therefore, {1, T, x2} generates Ra[z].
Example 5.1.36 Let
uyp = (1, 1), Ug = (1,0), us = (0, —1)

be vectors in R2. As seen in the previous example, the family (ui, uz,us) is a generating

family of R? However, this family is linearly dependent (linked), since
ul + uz = uz,

which yields a non-trivial linear relation between the vectors. Therefore, (u1,us,us) is
not a basis of R2. On the other hand, the family (u1,us) is both linearly independent

and generating in R?. Consequently, (u1,uz) is a basis of R2.
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Example 5.1.37 Let F be the subset of R? defined by:
F={(z,y,2) € R/ z= -2y +z}
F is therefore a vector subspace of R® generated by the vectors
=(-2,1,0) andv = (1,0,1).
Indeed

F={(z,y,2) €eR® [z = -2y + 2} { 2y+z y,2) | (y,2) € R*}
={y(-2,1,0) 4+ 2(1,0,1) / (y,2) € R?}
:S an{( 2,1,0),(1,0,1)} = ((-2,1,0),(1,0,1))

Furthermore, these vectors form a free family so (u,v) is a basis of F'.
Proposition 5.1.38 Let E be a vector space. If
{e1, €2, ..., en} and {u1, ug, ..., up}
are two bases of E, then n = m.

Remark 5.1.39 If a vector space E admits a basis, then all the bases of E have the
same number of elements, this number does not depend on the basis but it only depends

on the space E. This common number is called the dimension of E.

5.1.6 Dimension of vector spaces

Definition 5.1.40 Let E be a vector space over a field K , and let B = {e1, ea, ..., ep}
be a basis of E, The dimension of E, denoted dim (E) , is defined as

dim(F) = Card(B),
that is, the number of elements of the basis B.
Example 5.1.41 Let
e1 =(1,0,0),e2 = (0,1,0),e3 = (0,0,1).

The family {e1, ea, e3} is a basis of R3, called the canonical (standard) basis.
Therefore,
dim(R3) = Card ({e1, ez, e3}) = 3.
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Example 5.1.42 In the vector space Ra[x], the family {1, T, :r:2} s a basis. Therefore,
dim (Rs[z]) = Card {1, z, 2*} = 3.

Theorem 5.1.43 Let E be a vector space of dimension n, then :

1) Characterization of a basis: A family {e1, ea, ...,en} of n vectors in E is the basis

of E if and only if it is either: generating, or linearly independent (free). That is,

{e1, ez, ...,en} is abasis < il is generating < it is free.

2) Families with more than n vectors: Let {e1, ea, ..., ep} be p vectors in E, with
p>mn, then :

e The family cannot be free (it is linearly dependent).

o If the family is generating, then there exists a subset of n vectors among them that
forms a basis of E.

3) Families with fewer than n vectors: Let {e1, ea, ...,ep} be p vector in E, withp < n
, then :

e The family cannot be generating (it does not span E ).

o If the family is free, it is possible to find (n—p) additional vectors {ep+1, €pt+2, ....en}
in E such that {e1, ez, ..., ept1, ...,en} forms a basis for E.

4) If F is a vector subspace of E : then dim F < n, and moreover dimF = n <
F=F.

Proposition 5.1.44 Let E be a finite-dimensional vector space, and let Fy, Fy be sub-
spaces of E, then:

d1m(F1 + Fg) = dim F} + dim F5 — d1m(F1 N Fg),

where F1 + Fo = {u+v /u € Fy, v € Fy} is the sum of subspaces and Fy N Fy is their

intersection.
Exercise 5.1.45 Consider the subsets of R3:
E={(z,y,00€R® /2,y e R} and F = {(2,0,2) / z € R}.

1. Show that E and F are vector subspaces of R3 over R.
2. Calculate dim(F) and dim(F).

3. Determine ENF.

4. sR3=FE®F?
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Solution 5.1.46 1. Show that E and F are vector subspaces of R over R.
e To show that E is a vector subspace, we verify the following conditions:
(a) Non-empty: The zero vector (0,0,0) € E (taking x =0,y =0).
(b) Closed under addition: Let w = (z1,y1,0) and v = (x2,y2,0) be in E. Then:

u+v = (1 + x2,y1 + 42,0) € E.
(¢) Closed under scalar multiplication: Let w = (z,y,0) € E and X\ € R. Then:
M = (A\z, \y,0) € E.

Thus, E is a vector subspace.

o For F':

(a) Non-empty: The zero vector (0,0,0) € F (taking x =0).

(b) Closed under addition: Let u = (x1,0,21) and v = (x2,0,z2) be in F. Then:

u+v=(z1+x2,0,21 + x2) € F.
(c) Closed under scalar multiplication: Let u = (z,0,x) € F' and A € R. Then:
A = (Az,0,\z) € F.

Thus, F'is also a vector subspace.
2. Calculate dim(FE), dim(F')
(a) To find the dimension of E, we have:

E ={(z,y,0): z,y € R}
= {z(1,0,0) +y(0,1,0) : z,y € R}
= span{(1,0,0),(0,1,0)}.

The vectors (1,0,0) and (0,1,0) are linearly independent and therefore form a basis
for E. Thus, we conclude that the dimension of E is: dim(E) = 2.
(b) To find the dimension of F':The vector(1,0,1) spans F since any vector in F can

be expressed as x(1,0,1) for some x. Thus, we have:
dim(F) = 1.
3. To find ENF, we note that:

(z,9,2) E ENF = (z,y,2) € E and (z,y,2) € F.
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This implies:
(r,y,2) e E=2=0,(z,y,2) € F=y=0 and z = x.

Thus, the intersection 1is:
EnF ={(0,0,0)}.

4. The dimension of E + F can be calculated using the formula:
dim(F + F) = dim(E) 4+ dim(F) — dim(E N F).
Substituting the dimensions, we find:
dm(E+F)=2+1-0=3.

Since dim (R®) = 3 and dim(E + F) = 3, we conclude that E + F = R3. Furthermore,
since E+ F = R3 and from Question 3 we have ENF = {(0,0,0)}, we conclude that
RE=E®F.
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5.2 Linear applications

5.2.1 Definitions and examples

Definition 5.2.1 (linear map) Let E and F be two vector spaces over a field K.
A map f: E — F is called linear if it satisfies both of the following conditions:

Vo, y e B, f(x+y) = f(x) + f(y),
Vz € B, VA €K, f(Az) = Af(),

Equivalently,
Ve, y € E, A€ K, f(Az+y) = Af(z) + f(y).

Remark 5.2.2 The set of linear maps of E to F is denoted by L (E, F).

Example 5.2.3 The map f defined by
f:R3 = R?,
(%?J,Z) - f(xvyvz) = (2I+y,y—2§) ,

1$ a linear map.
Indeed, let (x,y,z2), (£,9,%2) € R® and A € R. Then

~

(x+2Z,y+7,2+ %)
2@+2)+(y+9),W+9) —(2+32))
20+ 2t +y+y,y+9—2—3%)
(2z4+y)+ 22 +9),(y—2)+ U —2)
204y, y —2)+ (2&+ 9,9 — %)
(z,y,2) + f(£,9, %),

i@y, 2) +(£,4,2)] =

\AA/—\/—\

and

f(A(@,y,2)) = [(Az, Ay, A2)
= (2Az+ Ay, \y — A2)
= (AQ2z+y),A(y—2))
= AN2z+y,y—2)
= M(z,y,2).
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Example 5.2.4 The map f : R? — R3defined by

f(xvy) = (3'52,-’13+y, 1)

1s not linear.

Indeed,
f((1,0)+(0,0)) = f(1,0) = (1,1,1),
whereas
f(1,0)+ f(0,0) =(1,1,1) + (0,0,1) = (1,1,2).
hence,

f((1,0)+(0,0)) # f(1,0) + f(0,0).

Proposition 5.2.5 If f is a linear map from E to F, then :
1.f(0g) = 0p.
2 f(-a) = —f().
3. If Vi is a subspace of E , then f(V1) is a subspace of F'.
4. If W1 is a subspace of F, then f~*(W1) is a subspace of E.

5. The composition of two linear maps is a linear map.

Proposition 5.2.6 Let E and F be vector spaces over K, and let f, g € L(E, F). If

E is finite-dimensional of dimension n and {e1, e, ..., ep} is basis of E, then
Vk € {1327 -"an}7 f(ek) = g(ek) & Vo e E; f(IL‘) = g(gj)

Proof. The implication (<) is obvious.
For (=), since {e1, e, ..., e,} generates F, for any x € F there exist scalars A1, Ag, ..., A, €

K such that "
T = Z ;€.
i=1
Since f and g are linear maps,
@)=Y Aif(e), g(@) =) Nig(ei).
i=1 i=1
If f(ei) =g (e;) for all 4, then f(z) =g (z)forallz € E. m

5.2.2 Linear maps and dimension

Let f: E — F be a linear map.
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The kernel of a linear map

Definition 5.2.7 The kernel (or null space) of f, denoted by ker f, is the set of all
vectors x € E such that f(z) = Op (the zero vector of F ):

ker f={z€E | f(z)=0r}=f 1 ({0r})

The image of a linear map

Definition 5.2.8 The image of f, denoted by Im f, is the set of all vectors in F' of the
form f (z) for some x € E:

Imf={f(z) /zeE}=[f(E)

Proposition 5.2.9 Let f: E — F be a linear map. Then:
1. ker f is a subspace of E.
2. Im f is a subspace of F'.
3. f is injective if and only if ker f = {0g}.
4. [ is surjective if and only if Im f = F.

Example 5.2.10 Consider the map f : R> — R? defined by

f(z,y,2) = (z +y,2).

This map is not injective but is surjective.

o Injectivity

ker f = {(z,9,2) €R® / (z+y,2)=(0,0)}
= {(z,y,2) €R® Jz4+y=0, z2=0}
= {(@,y,2) eR’ [ y=—z, 2=0}
= {(z,—z,0) / xz € R}
Since
(1,—-1,0) € ker f = ker f # {Ogs}.

Hence, f is not injective.

o Surjectivity.

Imf = {(z+y,2)/ (x,y,z)ER?’}
= {x(1,0) 4+ y(1,0) + 2(0,1) / x,y,z € R}.
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Thus,
Imf = span{(l,()), (Oa 1)} = RQv

and f is surjective.

Proposition 5.2.11 Let f: E — F be a linear map, with E of finite dimension. Then:

dim E = dimker f + dim Im f

The rank of a linear map

Definition 5.2.12 The rank of a linear map f is the dimension of its image :
rankf = dimIm f
Example 5.2.13 Find ker f, Im f and rankf for the map f : R* — R? defined by
fay,zt) =(x—yz+tx—y+2)

Kernel
ker f = {(z,y,2,t) €R* / (x—y, 2+ 1,z —y+2) = (0,0,0)}

From x —y =0, we get x = y.
Fromz —y+2=0, we get z =0, hence t = 0.
Thus,
ker f = {(z,2,0,0) / x € R} = span{(1,1,0,0)}.

Image
Imf = {(x—y,2+t,.%'—y+2')/.’L',y,Z,tGR}
= {(z—-9).(1,0,1) +£.(0,1,0) + 2(0,1,1) / =,y,2,t € R}
= span{(1,0,1), (0,1,0), 2(0,1,1)}.
To check linear independence, let A1, Ao, A3 € R:

>\1(1707 1) =+ AQ(Oa 170) + )\3(07 17 1) = (07070)
= (A1, A2 + A3, A1+ A3) = (0,0,0)
= A=A =X =0.

Hence, the vectors are linearly independent and form a basis of Im f.

rankf = dimIm f = 3.



