
Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

1

MATLAB

Chapter III : Introduction to programming with Matlab

We have seen so far how to use Matlab to perform commands or to evaluate

expressions by writing them in the command line (After prompt >>), so the commands used

are usually written as a single statement (possibly on a single line).

However, there are problems whose description of their solutions requires several

instructions, which require the use of several lines. For example, searching for the roots of a

second-degree equation (taking into account all possible cases).

A collection of well-structured instructions for solving a given problem is called a program. In

this part of the course, we will present the mechanisms of writing and executing programs in

Matlab.

1. General :

1.1 Comments :

Comments are explanatory sentences ignored by Matlab and intended for the user to

help him understand the part of the commented code.

In Matlab a comment starts with the % symbol and occupies the rest of the line.

For example :

>> A=B+C ; % Give A the value of B+C

1.2 Writing long expressions :

If a long expression cannot be written in a single line, it can be divided into several lines

by putting at the end of each line at least three points.

Example :
>> (sin(pi/3)^2/cos(pi/3)^2)-(1-2*(5+sqrt(x)^5/(-2*x^3-x^2)^1+3*x)) ;

 This expression can be rewritten as follows :

>> (sin(pi/3)^2/cos(pi/3)^2)- ... 

>> (1-2*(5+sqrt(x)^5 

>> /(-2*x^3-x^2)^1+3*x)) ; 

1.3 Reading data in a program (Inputs) :

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

2

To read a value given by the user, it is possible to use the input command, which has the

following syntax :

variable = input (‘an indicative sentence’)

When Matlab executes such an instruction, the indicative phrase will be displayed to the

user waiting for the latter to enter a value.

for example :

>> A = input ('Enter a whole number : ') 

Enter a whole number : 5 

A =

 5

>>

>> A = input (' Enter a whole number : '); 

Enter a whole number : 5 

>>

>> B = input ('Enter a vector line : ') 

Enter a vector line : [1:2:8,3:-1:0] 

B =

 1 3 5 7 3 2 1 0

1.4 Writing data in a program (Outputs) :

We have already seen that Matlab can display the value of a variable by typing only the

name of this last. For example :
>> A = 5 ;

>> A % Ask Matlab to display the value of A

A =

 5

With this method, Matlab writes the name of the variable (A) then the sign (=) followed

by the desired value. However, there are cases where only the value of the variable is

displayed (without the name and without the sign =).

To do this, we can use the disp function, which has the following syntax:disp(object)

The value of the object can be a number, a vector, a matrix, a string or an expression.

It is reported that with an empty vector or matrix, disp displays nothing.

Example :
>> disp(A) % Display the value of A without ‘A = ‘

The value deposited by the user will

be put in this variable

A sentence to help the user

know what to enter

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

3

 5

>> disp(A); % Semicolon has no effect

 5

>> B % Display vector B by the classical method

B =

 1 3 5 7 3 2 1 0

>> disp(B) % Display the vector B without ‘B = ‘

 1 3 5 7 3 2 1 0

>> C = 3 :1 :0 % Creating an empty C vector

C =

 Empty matrix: 1-by-0

>> disp(C) % disp displays nothing if vector is empty

>>

2. Logical expressions :

2.1 Logical operations :

the comparison operation its meaning

== equality

~= inequality

> greater than

< less than

>= greater than or equal to

<= less than or equal to

logical operations its meaning

& the bitwise and

| the logical OR

~ the logical negation

In Matlab a logical variable can take the values 1(true) or 0(false) with a small rule that

assumes that :

1) Any value equal to 0 will be considered false (= 0  false)

2) Any value other than 0 will be considered true ( 0  true).

The following table summarizes the operation of logical operations :

a b a & b a | b ~a

1 (true) 1(true) 1 1 0

1 (true) 0 (false) 0 1 0

0(false) 1 (true) 0 1 1

0 (false) 0 (false) 0 0 1

For example :
>> x=10;

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

4

>> y=20;

>> x < y % displays 1 (true)

ans =

 1

>> x <= 10 % displays 1 (true)

ans =

 1

>> x == y % displays 0 (false)
ans =

 0

>> (0 < x) & (y < 30) % displays 1 (true)

ans =

 1

>> (x > 10) | (y > 100) % displays 0 (false)
ans =

 0

>> ~(x > 10) % displays 1 (true)

ans =

 1

>> 10 & 1 % 10 is considered true therefore 1 & 1 = 1

ans =

 1

>> 10 & 0 % 1 & 0 = 1

ans =

 0

2.2 Matrix comparison :

The comparison of vectors and matrices differs somewhat from scalars, hence the

usefulness of the two functions ‘isequal’ and ‘isempty’ (which allow to give a concise answer

for comparison).

Function Description

isequal
tests whether two (or more) matrices are equal (having the same
elements everywhere). Returns 1 if so, and 0 otherwise.

isempty
tests if a matrix is empty (contains no elements). Returns 1 if it is, and 0
otherwise.

To better perceive the impact of these functions follow the following example :

>> A=[5,2;-1,3] % create the matrix A

A =

 5 2

 -1 3

>> B=[5,1;0,3] % create the matrix B

B =

 5 1

 0 3

>> A==B % test whether A=B ? (1 or 0 depending on the position)

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

5

ans =

 1 0

 0 1

>> isequal(A,B) % Test if A and B are equal (the same)

ans =

 0

>> C=[] ; % Create the empty matrix C

>> isempty(C) % Test if C is empty (true = 1)

ans =

 1

>> isempty(A) % Test if A is empty (displays false = 0)

ans =

 0

3. Flow control structures

Flow control structures are instructions for defining and manipulating the order of

execution of tasks in a program. They offer the possibility to perform different treatments

depending on the state of the program data, or to perform repetitive loops for a given process.

Matlab has eight flow control structures, namely :

 if

 switch

 for

 while

 continue

 break

 try - catch

 return

We expose the first four : (if, switch, for and while)

3.1 the if statement :

The if statement is the simplest and most widely used flow control structure. It guides

the execution of the program according to the logical value of a condition.Its general syntax is

as follows :

if(condition) if (condition)

instruction_1 ensemble d’instructions 1

instruction_2 oubien else

. . . ensemble d’instructions 2

Instruction_N end

end

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

6

If the condition is evaluated at vari, the instructions between the if and the end will be

executed, sinonelles will not (or if an else exists the instructions between the else and the end

will be executed). If it is necessary to check several conditions instead of only one, elseif

clauses can be used for each new condition, and in the end an else can be set in case no

condition has been evaluated to true.Here is the general syntax:

For example, the following program defines you according to your age :

>> age = input('Enter your age : '); ...

 if (age <2)

 disp('You are a fool')

 elseif (age <13)

 disp('You are a child')

 elseif (age < 18)

 disp ('You are an adolescent')

 elseif (age <60)

 disp ('You are unadulterated)

 else

 disp ('You are an old man)

 end

As you can see, writing a Matlab program directly after the command prompt (the

prompt >>) is a bit unpleasant and annoying.

A more convenient method is to write the program to a separate file, and call that

program (if necessary) by typing the file name in the command prompt.

This approach is defined in Matlab by M-Files, which are files that can contain data, programs

(scripts) or functions that we develop.

To create an M-Files simply type the command edit, or simply go to the menu: File New

M-Files (or click on the icon).

if (expression _1)

set of instructions 1
elseif (expression_2)

set of instructions 2
....

elseif (expression_n)

set of instructions n
else

set of instructions if all expressions were false
end

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

7

 In any case an editing window like this will appear :

All you have to do is write your program in this window and save it with a name (for example:

‘First_Program.m’). It is reported that the extension of the M-Files files is always ‘.m’.

Now, if we want to run our program, just go to the usual command prompt (>>) and then type

the name of our file (without the ‘.m’) like this:

>> First_Program 

And the program will start running immediately.

To return to the editing window (after closing it) simply enter the command :

>> edit First_Program 

Example :

Let’s create a program that finds the roots of a second-degree equation designated

by :

ax2+bx+c=0. Here is the M-File that contains the program (it is saved with the name

'Equation2deg.m')

% Programme de résolution de l’équation a*x^2+b*x+c=0

a = input ('Entrez la valeur de a : '); % lire a
b = input ('Entrez la valeur de b : '); % lire b
c = input ('Entrez la valeur de c : '); % lire c

delta = b^2-4*a*c ; % Calculer delta
if delta<0
disp('Pas de solution') % Pas de solution
elseif delta==0
 disp('Solution double : ') % Solution double
 x=-b/(2*a)
else
 disp('Deux solutions distinctes: ') % Deux solutions
x1=(-b+sqrt(delta))/(2*a)
 x2=(-b-sqrt(delta))/(2*a)
end

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

8

If we want to run the program, just type the name of the program:

>> Equation 2 of g 

Enter the value of a : -2 

Enter the value of b : 1 

Enter the value of c : 3 

Two solutions:

x1 =

 -1

x2 =

 1.5000

Thus, the program will be executed following the instructions written in its M-File. If an

instruction is terminated by a semicolon, then the value of the variable concerned will not be

displayed, but if it ends with a comma or a line break, then the results will be displayed.

Note : Il et Note: There is the predefined solve function in Matlab to find the roots of an

equation (and much more). If we want to apply it to our example, just write:

>>solve('-2*x^2+x+3=0','x')
years =

 -1

 3/2

3.2 The switch statement :

The switch statement executes groups of statements based on the value of a variable or

expression. Each group is associated with a case clause that defines whether or not this group

should be executed according to the equality of the value of this box with the evaluation result

of the switch expression.If not all cases have been accepted, it is possible to add an otherwise

clause that will be executed only if no box is executed.

Therefore, the general form of this instruction is:

Example :
x = input ('Enter un number: ') ;

switch(x)

switch (expression)

case value_1

Instruction group 1

case value_2

Instruction group 2

. . .

case value_n

Instruction group n

otherwise

Package instructionswhere the boxes have failed

end

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

9

 case 0

 par ('x = 0 ')

 case 10

 par('x = 10 ')

 case 100

 par('x = 100 ')

 otherwise

 par('x n'' is not s 0 or 10 or 100')
end

The execution will give:

Enter a number : 50 

x is not 0 or 10 or 100

3.3 The for statement :

The for statement repeats the execution of a group of instructions a specified number of

times. It has the following general form:

vecteur The expression_vector corresponds to the definition of a vector: start: not: end or

start: end

The variable will go through all the elements of the vector defined by the expression, and for

each it will execute the group of instructions.

Example :

In the following table, we know three forms of the for statement with the Matlab result:

The instruction

for

for i = 1 : 4
 j=i*2 ;
 disp(j)
end

for i = 1 : 2 : 4
 j=i*2 ;
 disp(j)
end

for i = [1,4,7]
 j=i*2 ;
 disp(j)
end

the résultat of

the exécution

 2
 4
 6
 8

 2
 6

 2
 8
 14

for variable = expression_vector

 instruction group

end

end

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

10

3.4 The while statement :

The while statement repeats the execution of a group of statements an indeterminate number

of times depending on the value of a logical condition. It has the following general form:

As long as the expression of while is evaluated to true, the instructionsset will run in a loop.

Example :

a=1 ;

while (a~=0)

 a = input ('Enter unnombre (0 to finish) : ') ;

end

 This program asks the user to enter a number. If this number is not equal to 0 then the

loop repeats, otherwise (if the given value is 0) then the program stops.

4. Recap exercise

There are predefined functions in Matlab given in the table below. Let’s try to program

them (for a given vector V).

 function Description The program that simulates it

sum (V)
The sum of the elements of a
vector V

n = length(V);

sum = 0 ;

for i = 1 : n

sum=sum+V(i) ;

end

disp(sum)

prod (V)
The product of elements of a
vector V

n = length(V);

product = 1 ;

for i = 1 : n

product=product*V(i) ;

end

disp(product)

mean (V)
The average of the elements of a
vector V

n = length(V);

moyenne = 0 ;

for i = 1 : n

moyenne = moyenne+V(i) ;

end

moyenne = moyenne / n

while (condition)

 set of instructions

end

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

11

diag (V)
Create a matrix with vector V in
the diagonal, and 0

n = length(V);

A = zeros(n) ;

for i = 1 : n

 A(i,i)=V(i) ;

end

disp(A)

sort(V)
Order elements of vector V in
ascending order

n = length(V);

for i = 1 : n-1

 for j = i+1 : n

 if V(i) > V(j)

 tmp = V(i) ;

 V(i) = V(j) ;

 V(j) = tmp ;

 end

 end

end

disp(V)

5. The functions

There is a difference in concept between functions in computer science or mathematics:

1. In computer science, a function is a routine (a sub-program) that accepts arguments

(parameters) and returns a result.

1. In mathematics a function f is a relationship that assigns to each value x no more than

one value f(x).

5.1 Creating a function in an M-Files:

Matlab contains a large number of predefined functions such as sin, cos, sqrt, sum, …
etc. And it is possible to create our own functions by writing their source codes in M-Files (with
the same function name) respecting the following syntax:

the

function

.

.

.

.

.

.

The arguments or the parametres

(entries)

 results

(entries)

r1
r2

rn

arg1
arg2

argn

function [r1, r2, …, rn] = nom_fonction (arg1, arg2, …, argn)

 % The body of the function
 . . .
 r1 = . . . % the value returned for r1
 r2 = . . . % The value returned for r2
 . . .
 rn = . . . % the value returned for rn

end % The end is optional

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

12

Or: r1...rn are the values returned, and arg1...argn are the arguments.

Example : Write a function that calculates the square root of a number by the Newton
method (view in the TD).

Solution :
>> edit

Execution :
>> x = root (9)

x =
 3

>> x = root (196)
x =
 14.0000

>> x = root ([16,144,9,5])
x =

 4.0000 12.0000 3.0000 2.2361

Remark :

Unlike a program (a script), a function can be used in an expression for example :

2* root (9)-1.

Comparison between a program is a function

 program fonction

a = input('Enter a positive number: ');
x = a/2;
Precision = 6;
for i = 1:precision
 x = (x + a ./ x) / 2;
end
disp(x)

function r =root(number)
r = number /2;
Precision = 6;
for i = 1: Precision
 r = (r + number ./ r) / 2;
end

execution :
>> root 
Enter a positive number: 16
 4

execution :
>> root (16)
 ans =
 4

one cannot write expressions such as :

>> 2* root + 4

you can write phrases like :

>> 2* root (x) + 4

function r =racine(numbre)

r = numbre/2;

precision = 6;

for i = 1:precision

 r = (r + numbre ./ r) / 2;

end

The root file. m

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

13

6. Polynomials
 MATLAB represents a polynomial as a row vector containing the coefficients arranged in

decreasing order of powers. For example, the polynomial P given by P(x) = x² - 6x + 9 is represented as:

Let me know if you need further adjustments:

>> P = [1 −6 9]

The following table shows some MATLAB commands for manipulating polynomials:

>> y=polyval(p,x)

>> z=roots(p)

>> p=conv(p1,p2)

>> [q,r]=deconv(p1,p2)

>> y=polyder(p)

>> y=polyint(p)

