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Chapter 4 : Numerical Solution of Systems of Linear Equations

In practice, engineers are often faced with problems whose solution involves solving a system of equa-
tions that models the various elements under consideration. For example, determining currents and voltages in
electrical networks requires solving a system of linear equations.

We seek the vector X ∈ Rn, X = (x1, x2, . . . , xn), which is the solution of the following linear system :

AX = b⇐⇒


a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2
...
an1x1 + an2x2 + · · ·+ annxn = bn

(1)

This system admits a unique solution when the determinant of A is non-zero, which we will assume from
now on. Solving this system using direct methods becomes impractical when n is relatively large. Therefore, it
is preferable to use iterative methods based on constructing a sequence that converges to the solution of the
system.

In this chapter, we will introduce two iterative methods that provide an approximate solution to the
system of linear equations using a linear function f such that Xk+1 = f(Xk), k ∈ N. These methods are very
easy to implement and program, require minimal memory, and produce results as accurate as desired.

Given an arbitrary initial vector X0, we construct a sequence of vectors

X0, X1, · · · , Xk, · · ·

which converges to the solution X∗ of the linear system AX = b. We consider the linear system (1) with A
being an invertible square matrix of order n and b a vector in Rn. For any invertible square matrix M of order
n, the system (1) is equivalent to

MX − (M −A)X = b

or, by setting N = M −A, B = M−1N , and c = M−1b, we obtain

X = BX + c .

This allows us to define the following iterative formula :{
X0 ∈ Rn vecteur initiale
Xk+1 = BXk + c.

(2)

Let X∗ be the exact solution of (1). If we denote ek = ‖Xk −X∗‖ as the k-th error vector, we obtain

ek = ‖Xk −X∗‖ = ‖(BXk−1 + c)− (BX∗ + c)‖ = B‖Xk−1 −X∗‖
= Bek−1 = Bke0

Remark 1. In practice, if we impose a precision ε, we can estimate the error by :

‖Xk −Xk−1‖ ≤ ε

This means that, for all i ∈ {1, . . . , n}, we have :

|xki − xk−1i | ≤ ε.

Theorem 1. The iterative method (2) converges if the sequence of vectors {ek}k∈N converges to zero regardless
of the initial vector X0, provided that one of the three norms is less than 1 :
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- ‖B‖1 = max
j

(

n∑
i=1

|Bij |)

- ‖B‖∞ = max
i

(

n∑
j=1

|Bij |)

- ‖B‖2 =
√
ρ(BBt).

Depending on the choices of the matrices M and N , we have different iterative methods. Let D be the
matrix formed by the diagonal elements of A, E be the matrix formed by the −aij when i > j, and F be the
matrix formed by the −aij when i < j, so that A = D − (E + F ).

- The matrix D is a diagonal matrix of A, given by :

D =


a11 0 · · · 0
0 a22 · · · 0
...

. . .
...

...
0 0 · · · ann


- The matrix E is a lower triangular matrix of A with a zero diagonal.

E =


0 0 · · · 0
−a21 0 · · · 0

...
. . .

...
...

−an1 −an2 · · · 0


- The matrix F is an upper triangular matrix of A with a zero diagonal.

F =


0 −a12 · · · −a1n
0 0 · · · a2n
...

. . .
...

...
0 0 · · · 0


1. Jacobi Method

In the Jacobi iterative method, the matrix A of the system AX = b is decomposed as A = M − N .
The matrix M corresponds to the diagonal of A (with zeros outside the diagonal), so M = D, and the matrix
N is the matrix A in which the diagonal elements have been replaced by zeros, i.e., N = E + F . The matrix
J = M−1N = D−1(E + F ) = I − D−1A is called the Jacobi matrix. Starting from an initial vector X0 =
(x01, x

0
2, . . . , x

0
n)t, at each step, we compute Xk using the following formula :

xk+1
i =

1

aii

bi − n∑
j=1,j 6=i

aijx
k
j

 , i = 1, 2 . . . , n . (3)

Remark 2. The Jacobi iterative method does not always converge. If A is a positive definite matrix, the
iterative method converges. Similarly, if A is a strictly diagonally dominant matrix, i.e., |aii| >

∑
j 6=i |aij |, then

the Jacobi method is convergent.

Exemple 1. Consider the following system  4x1 + 2x2 + x3 = 4
−x1 + 2x2 = 2
2x1 + x2 + 4x3 = 9 .

Let X0 = (0, 0, 0)t be the initial vector. By calculating the first five iterations, we obtain :

X1 =

 1
1

9/4

 , X2 =

−1/16
3/2
3/2

 , X3 =

 −1/8
−1/32
61/32

 , X4 =

 5/128
15/16

265/128

 , et X5 =

 7/512
261/256
511/256


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Exemple 2. Let us solve the following system using the Jacobi method : 3x1 + x2 − x3 = 2
x1 + 5x2 + 2x3 = 17
2x1 − x2 − 6x3 = −18

We have, 
i = 1, xk+1

1 = 1
3

(
2− xk2 + xk3

)
i = 2, xk+1

2 = 1
5

(
17− xk1 − 2xk3

)
i = 3, xk+1

3 = −1
6

(
−18− 2xk1 + xk2

)
Let X0 = (0, 0, 0)t be the initial vector, we obtain : X1 =

 2/3
17/5

3

, X2 =

 8/15
31/15
2.6555

.

After 10 iterations, we obtain the following table of results :

k xk1 xk2 xk3
0 0 0 0
1 0,666666 3,4 3
2 0,533333 2,066667 2,655556
3 0,862963 2,231111 2,833333
4 0,867407 2,094074 2,915802
5 0,940576 2,0601198 2,970123
6 0,959975 2,035835 2,970159
7 0,978108 2,019941 2,980686
8 0,986915 2,012104 2,989379
9 0,992425 2,006865 2,993621
10 0,995585 2,004067 2,996331

From this table, we notice that the values converge towards the solution X =

1
2
3

.

2. Méthode de Gauss-Seidel

The Gauss-Seidel method is an improvement over the Jacobi method, as it accelerates the iterative process.
Starting from the Jacobi method, the computation of the vectors X1, X2, . . . , Xk, . . . leads to convergence. This
means that each new vector is better than the previous one.

In the Jacobi method, we notice that to compute the component x22 of the vector X2, we use the com-
ponents of X1, even though x21 is already computed and is better than x11. This is the principle behind the
Gauss-Seidel method : each component is used as soon as it is computed.

Thus, to calculate the component xk+1
i , we use all the components from xk+1

1 to xk+1
i−1 already computed

in iteration (k + 1), as well as the components xki+1 to xkn that are still at iteration k.
Given that the matrix A is decomposed as :

A = M −N,

we take :
M = D − E, N = F.

This modifies equation (3) as follows : for k ≥ 0 (assuming again that aii 6= 0 for i = 1, . . . , n).

xk+1
i =

1

aii

bi − i−1∑
j=1

aijx
k+1
j −

n∑
j=i+1

aijx
k
j

 , i = 1, 2 . . . , n . (4)
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Remark 3. The Gauss-Seidel method does not always converge. If A is a positive definite matrix, the iterative
method converges. Similarly, if A is a diagonally dominant matrix, i.e., if

|aii| >
∑
j 6=i

|aij |,

then the Gauss-Seidel method converges.

Example 1. Solve the following system using the Gauss-Seidel method with 3 iterations and an initial vector
X0 = (0, 0, 0)t.  −x1 + x2 + 3x3 = −1

x1 + 2x2 = 2
3x1 + x2 − x3 = 1

This system can be written in reduced form :
i = 1, x1k+1 = 1 + x2k + 3x3k

i = 2, x2k+1 = 1− 1
2x

1
k+1

i = 3, x3k+1 = −1 + 3x1k+1 − x2k+1

- First iteration, we obtain X1 =

 1
0.5
1.5


- Second iteration, we obtain X2 =

 6
−2
19


- Third iteration, we obtain X3 =

 56
−27
194

.

Example 2. Solve the same linear system from Example 2 using the Gauss-Seidel method.
For each iteration k, the iterative scheme of the Gauss-Seidel method is written in this case :

i = 1, xk+1
1 = 1

3

(
2− xk2 + xk3

)
i = 2, xk+1

2 = 1
5

(
17− xk+1

1 − 2xk3
)

i = 3, xk+1
3 = −1

6

(
−18− 2xk+1

1 + xk+1
2

)
Starting from X0 = (0, 0, 0)t, we find X1 =

(
2
3 ,

49
15 ,

241
90

)t
. After 10 iterations, we obtain the following table

of results :

k x1k x2k x3k
0 0 0 0
1 0.6666667 3.266667 2.677778
2 0.4703704 2,234815 2.784321
3 0.8498354 2.116305 2.930561
4 0.9380855 2.040158 2.972669
5 0.9775034 2.015432 2.989929
6 0.9914991 2.005729 2.996212
7 0.9968271 2.002150 2.998584
8 0.9988115 2.000804 2.999470
9 0.9995553 2.000301 2.999802
10 0.9998335 2.000113 2.999926
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It can be observed that for the same number of iterations, the approximate solution obtained by the
Gauss-Seidel method is more accurate. The Gauss-Seidel method generally converges more quickly than
the Jacobi method, but not always.
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